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References: These notes are based on (in decreasing order): 

1. R. Jain, “The art of computer systems performance analysis”, Wiley 

2. J.-Y. Le Boudec, “Performance Evaluation of Computer and Communications systems”, 

available online 

3. S. M. Ross, “Introduction to probability and statistics for engineers and scientists”, Else-

vier, cap. 7-9 

Some of the figures have been taken from book 2 and from the online PDF slides related to book 1. 

Should their authors dislike this, I will remove the figures. 

 

Pre-requisites: strong background in probability calculus, algebra (factorials, permutations) and 

mathematic analysis (integrals, derivatives).  
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2 Statistics 

Statistics is the science by which probability results are inferred from experimental data. That is, 

you have the data, and you get a CDF. It is, in a sense, the dual of probability theory, where you 

start from a CDF and obtain some data.  

The following concepts are of key importance in statistics: 

- Population: the set of individuals on which you want to infer statistics (e.g., their average 

height). The information related to the population (e.g., its mean and variance) are called pa-

rameters, and they are constants. Only they are unknown. The population mean is a constant, 

and quite often you need to estimate it the best you can. 

- Sample: a (possibly very small) subset of a population. You measure a sample and try to infer 

properties that are expected to be true (with some approximation) of the population. The in-

formation related to the sample are called statistics. For instance, the sample mean (i.e., the 

mean of the sample that you take) is a statistic, and it is a random variable.  

Your task is often to estimate parameters through statistics.  

We call a random sampling of 𝑛 elements taken from a population of 𝑁 elements one such that 

every one of the (
𝑁
𝑛
) subsets of cardinality 𝑛 are equally likely to represent it. Sampling is a ran-

dom experiment, since you cannot predict the outcome in advance. 

.

.
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1.75
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1

n
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experiment Random variable

 

For instance, the students in this classroom are a sample of a population of the students at the uni-

versity of Pisa. You can measure the sample mean of their height (or age, or whatever), and use it as 

an estimate of the population of the students at UniPi. However, sampling UniPi students in a class-
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room within the School of Engineering will not yield an unbiased sample (there is no chance that a 

Law or Vet student can ever be included).  

 

In general, we make the assumption that the measure whose parameters we want to estimate does 

exist. Specifically, that measure has a CDF, and the elements of a sample represent IID RVs ac-

cording to that CDF.  

The IID assumption is fundamental. For now, we assume that it holds, and then we see what to 

do if it does not hold. 

 

It has to be observed that the English words sample and example have the same origin (old French 

word “essample”, from Latin “exemplum”). This should always be kept in mind: a sample is an ex-

ample of what happens in a population. Different conclusions may be reached by taking another 

sample, or a larger one.  When you measure the output of a system, you are taking a sample of its 

possible outputs. 

A fundamental problem is the following:  

Since sampling is a random process, the observed statistics might be due to different causes: 

a) Structural properties, i.e. facts that are true of the population; 

b) Randomness (i.e., “luck of the draw”). 

There are ways to quantify the effect of randomness on sample statistics, and we will become fa-

miliar with some of them. It is important to learn right from the start that you cannot say anything 

with certainty, unless 𝒏 = 𝑵. The best that we can settle with is something along the lines of 

“Given the data, I can be 95% certain that 𝑋 holds. If you want to be more certain, get me more da-

ta”. 

2.1 Data presentation 

Assume that you have a sample of 𝑛 IID RVs, 𝑋𝑖, 1 ≤ 𝑖 ≤ 𝑛, called observations, obtained e.g. by 

measuring your system, or as an output of a simulation of your system. 𝑛 is called the sample 

width. How can you visualize those data?  

There are, of course several answers to this question. The thing that you may want to keep in mind 

is that: 

- visualizing those data will aid you to understand how your system works, so you had better 

find the way that gives you the information you really need 
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- you will often need to find the way to present those data in the most convincing way, putting 

what is really relevant in the most accessible format. 

Thus, we review here a set of alternatives, with the caveat that you have to select the best accord-

ing to your needs and situation. Again, there is no simple solution, and patience and perseverance 

are required.  

2.1.1 Empirical CDF 

The ECDF can be obtained as a function of 𝑥 by plotting the following function: 

𝐹(𝑥) =
1

𝑛
∑1{𝑋𝑖≤𝑥}

𝑛

𝑖=1

 

In other words, 𝐹(𝑥) is the proportion of data that does not exceed value 𝑥. This gets you a stair-

case function, which is what you can expect if the distribution is discrete.  

Operatively, the way to compute an ECDF is the following: you take your sample, and compute its 

ordered statistics. These are obtained by sorting the observations in the sample in ascending order, 

so that 𝑋(1) = min{𝑋𝑖},  𝑋(𝑖) ≤ 𝑋(𝑖+1) and 𝑋(𝑛) = max{𝑋𝑖}
1. Then, you have a staircase with steps 

whose height is 1 𝑛⁄ , placed at the ordered statistics. When 𝑋(𝑖) = 𝑋(𝑖+1), you just sum the height.  

 

If you are dealing with a continuous distribution, you may want to interpolate the data so that they 

look smooth. The way to do this is the following: 

𝐹(𝑥) =

{
 
 

 
 
0 𝑥 < 𝑋(1)
𝑖 − 1

𝑛 − 1
+

𝑥 − 𝑋(𝑖)

(𝑛 − 1) ⋅ (𝑋(𝑖+1) − 𝑋(𝑖))
𝑋(𝑖) ≤ 𝑥 < 𝑋(𝑖+1)

1 𝑥 ≥ 𝑋(𝑛)

 

The above formula states that the vertical axis is divided into n-1 portions, and the ECDF grows lin-

early within each interval [𝑋(𝑖), 𝑋(𝑖+1)). 

ECDFs can be compared. Take two alternative designs, 𝐴 and 𝐵. If the ECDF of the metric you are 

interested in is always above in 𝐴, then: 

- If “lower is better” (e.g., a delay), then 𝐴 is better than 𝐵 

- If “higher is better” (e.g., a throughput), then 𝐵 is better than 𝐴 

 

1 We will use parentheses in the subscript to denote the fact that 𝑋(1) is the smallest observation in the sam-

ple, and 𝑋1 is the first observation obtained. 

 

This works if all ob-

servations are differ-

ent. If two are the 

same, then you just 

sum up two steps. 



Notes on data analysis (student version) – Giovanni Stea – last saved 30/10/2022 17:48:00 

 

8 

 

 

If the two curves intersect at some point, you cannot make conclusions, at least not easily. However, 

if the intersection is at the top or at the bottom, then you can make some inferences, e.g. by saying 

that one system is better than the other most of the times except that it may sometimes show a 

worse performance.  

 

In any case, you can get some information out of ECDFs, hence this is the first graph to attempt. In 

other cases ECDFs can be tricky, and you will need more information. 

 

2.1.2 Histograms 

Assume initially that you are dealing with a continuous random variable. Histograms allow you to 

obtain an empirical PDF from the sample. The algorithm to create a histogram is the following: 

- select a bucket width Δ, i.e. the range within which observations will be counted in the same 

histogram column. 

- Initialize all buckets to zero. 

- for each observation 𝑋𝑖, add 1 to bucket ⌊𝑋𝑖 Δ⁄ ⌋ 
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The problem with histograms is that the way they look will depend a lot on how you choose Δ. At 

the two extremes, you will have  

- too small Δ: zero or one observations per bucket →  “comb-like” histogram. If you have a sam-

ple of 𝑛 and select Δ ≈ (𝑋(𝑛) − 𝑋(1)) 𝑛⁄ , then you will have very few observations per bucket. 

- too large Δ: all samples in the same bucket → “block-like” histogram. 

In both cases, you can’t get anything useful out of it (such as, e.g., the relative frequency of your 

variable in a given bucket).  

Changing the bucket width Δ will make the EPDF look extremely different, hiding or showing 

the very details that you might want to discover.  

 

By misjudging the width of your bucket Δ, you end up thinking that the probability is decreasing, 

where in fact it is fairly symmetric and peaks around 5.  

In the books, you normally find the rule of thumb that the average number of elements per non-

empty bucket should be around five for the histogram to be meaningful. My advice here is that you 

draw a histogram several times, with different values of Δ, and measure the average number of el-

ements per non-empty bucket every time. This way you are sure that you are not missing important 

pieces of information. Then you will use the one with the best trade-off between compactness and 

accuracy. A useful guideline is to choose the smallest Δ for which the histogram looks “smooth”.  

Regarding accuracy, a straightforward caveat is to avoid mixing “very different” values in the same 

bucket. If the observable performance of your system is (looks) completely different when 𝑋𝑖 = 5 

and when 𝑋𝑖 = 9.5, you may want to use Δ < 5, otherwise you are not showing anything significant. 

Thus, Δ depends on the data and the purpose for which they are aggregated.  

 

Note that the verti-

cal scale of the right 

figure is wrong 
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The same applies if you are plotting histograms for a discrete RV. In this case, it is somewhat easi-

er since you can build on the fact that you already know a unit.  

 

If you want to compare two systems using histograms, remember to: 

- use the same bucket width for both 

- either have the same sample width 𝑛 (if it is up to you to select it), or normalize the ordinates 

to the respective sample widths – otherwise comparisons are impossible.  

2.1.3 Scatterplots 

A simple, although not always effective way to show a sample of IID RVs is to use a scatterplot. 

The latter is a plot where points (or markers) are scattered along a given horizontal span, and one 

point is drawn at the proper height.  

Tools that allow you to plot scatterplots normally show you where other statistics are placed (e.g., 

sample mean, sample median, etc.) 

1
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This is a good way to see at a glance how dispersed values are, and where you can expect to have 

the highest fraction of data. You may want to use them to figure out Δ values for histograms. Scat-

terplots are also good to spot outliers, which are very hard to spot in an ECDF or a histogram, or to 

understand clustering. 
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2.1.4 Box Plots 

Also called “box and whiskers” plot. It consists in plotting: 

- a box whose edges are the 1st and 3rd quartiles (i.e., the 25th and 75th percentiles), call them 

𝑄1, 𝑄3 

- a line representing the median (i.e., the 50th percentile) 

- two whiskers, protruding from the box, and representing something different, according to dif-

ferent conventions. Common practices are: 

o the maximum and minimum (not very common); 

o the 2nd and 98th percentiles; 

o the lowest datum still within 1.5 ⋅ (𝑄3 − 𝑄1) of the lower quartile, and the highest datum 

still within 1.5 ⋅ (𝑄3 − 𝑄1) of the upper quartile. The difference 𝑄3 − 𝑄1 is called the in-

ter-quartile range (IQR). 

Comparisons of computa-

tion times before/after op-

timization, in a situation 

in which said times can 

change by orders of mag-

nitude depending on the 

observation 
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Unless you use whiskers to plot the maximum and the minimum, which is however uncommon, 

you may also have outliers, i.e., data outside the interval marked by the whiskers. These should be 

shown with some marker in the graph.  

2.1.5 Lorenz Curves 

All the above plots can be used – with a grain of salt – to compare alternatives. In the ECDF exam-

ple, they show clearly that the new code is better than the old code, i.e. that things run generally 

faster. Sometimes it is useful to assess the variability of a sample, i.e. how dispersed a sample is. 

This is because in many cases, we would expect or prefer that the output of a system be perfectly 

regular. The fact that it is not is unpleasant, and is usually called unfairness. 

For instance, we would expect all customers making the same request to a web server to observe, 

statistically speaking, the same performance (i.e., the same response time). The ideal situation is 

that every customer experiences the same response time. This will not happen in practice, be-

cause of several causes: queuing of near-simultaneous requests, disk swaps, different TCP conges-

tion windows for different connections, cache hits/misses, etc., and those causes affect different 

customers in a different way.   

We would then like to quantify how unfair our system is by quantifying how variable the data are.  

A good way to do so – which works only on non-negative random variables – is to plot a Lorenz 

curve.  

The latter is defined as follows: 

- sort your sample and get the ordered statistics 𝑋(1) ≤ 𝑋(2) ≤. . . ≤ 𝑋(𝑛);  

- Compute 𝑇 = ∑ 𝑋𝑖
𝑛
𝑖=1 , the sum total of the sample; 

- Plot points (1 𝑛⁄ , 𝑋(1) 𝑇⁄ ), (2 𝑛⁄ , (𝑋(1) + 𝑋(2)) 𝑇⁄ ), …, (𝑗 𝑛⁄ , ∑ 𝑋(𝑖)
𝑗
𝑖=1 𝑇⁄ ), 1 ≤ 𝑗 ≤ 𝑛; 

- Interpolate, assuming (0,0) as the first point of the curve. 
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Obviously, the Lorenz curve touches point (1,1). Let us take a look at its shape.  

- If all the values were equal, the LC would be the bisector of the first quadrant. This is called the 

line of maximum fairness, and should be plotted for reference.  

- If 𝑇 = 𝑋(𝑛) and all the other values are null, then the LC follows the x axis until point (1 −

1 𝑛⁄ , 0), and then goes up to point (1,1). Therefore, the horizontal axis and the vertical line 

passing through (1,0) are a lower bound for the LC. They are called the line of maximum un-

fairness, and should be plotted as a reference too. 

 

The LC will lie between the two bounds. The fairer the system, the closer the LC will be to the bi-

sector.  

Note that you can compare two alternatives as for variability using LCs, but you cannot say any-

thing about (e.g.) the fact that the 𝐴’s average response time will be higher/lower than 𝐵’s. This is 

because you are normalizing the vertical axis to a different sum total, hence you are losing that 

piece of information. 

2.2 Summarizing data  

Quite often you are requested to provide one number (or as few numbers as possible) that describes 

the performance of a system. This is useful, for instance, for comparisons, as well as for ease of 

storage (it is costly to store an ECDF). Three popular alternatives are to specify one of the three 

indexes of central tendencies, namely the (sample) mean, median and mode.  

Let us review what these are, and why we should prefer one or the other. 
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2.2.1 Indexes of central tendencies 

We define the sample mean as: 

𝑋 =
1

𝑛
⋅∑ 𝑋𝑖

𝑛

𝑖=1
 

𝑋 is itself a RV, since it is the sum of RVs. Let us discuss some of its properties. 

It is: 

- 𝐸[𝑋] =
1

𝑛
⋅ 𝐸[∑ 𝑋𝑖

𝑛
𝑖=1 ] =

1

𝑛
⋅ 𝑛 ⋅ 𝐸[𝑋𝑖] = 𝜇; 

- 𝑉𝑎𝑟(𝑋) = 𝑉𝑎𝑟 (
1

𝑛
⋅ ∑ 𝑋𝑖

𝑛
𝑖=1 ) =

1

𝑛2
⋅ 𝑛 ⋅ 𝑉𝑎𝑟(𝑋𝑖) =

𝜎2

𝑛
. 

This is something that we have already shown as a formulation of the CLT. The larger the sample 

is, the more 𝑋 converges to a RV which is equal to the population mean 𝜇 with no variance.  

We also know (still from the CLT) that, for a large sample, 𝑋 is Normal (whatever the CDF of 

𝑋1, . . . , 𝑋𝑛 – except for HT ones2). Of course, if 𝑋1, . . . , 𝑋𝑛 are themselves Normal, then 𝑋 is Normal 

for any value of 𝒏 (this is, in fact, a property of Normal variables). In all other cases, 𝑋 tends to be 

Normal for large samples. 

Therefore, at least for large values of 𝑛, it is: 

𝑋 − 𝜇

𝜎 √𝑛⁄
~𝑁(0,1) 

The sample median is obtained from the ordered statistics (𝑋(1) ≤ 𝑋(2) ≤. . . ≤ 𝑋(𝑛)) taking: 

- if 𝑛 is odd, observation 𝑋(⌈𝑛 2⁄ ⌉), i.e. the midpoint of the ordered statistics; 

- if 𝑛 is even, value 
𝑋(𝑛 2⁄ )+𝑋(𝑛 2+1⁄ )

2
, i.e. the average of the two observations left and right of the 

midpoint. 

The sample mode is the value with the highest probability. It should not be estimated directly on a 

sample (especially a sample of a continuous RV). It should instead be sampled on a histogram, as 

the midpoint of the bucket with the highest frequency. The sample mode may not be unique. 

 

Now, which should we use? 

It depends a lot on the distribution of the sample. Common sense says that: 

- if the distribution is symmetric, the mean and the median are the same, hence either will do; 

- the mode may not be unique, whereas the other two certainly are; 

 

2 From now on, we will omit repeating every time that HT distributions are exceptions to the CLT. 
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- the mean is additive, while the others are not: the mean of a sum is the sum of the means, 

whereas the median of a sum is definitely not the sum of the medians; 

- The sample mean is sensitive to outliers. If you have a small sample, then few outliers can 

change your mean considerably. The median is instead very robust to outliers.  

 

The last observation is important. If your distribution is very skewed, or has a long tail, the median 

will be more representative of a typical observation than the mean: the values that you observe will 

resemble the median more than the mean.  

 

This is easy to prove. Suppose that you have a sample of 𝑛 observations, whose sample mean is 𝑋. 

Suppose that 𝑛 is odd, so that the median is 𝑋0.5 = 𝑋(⌈𝑛 2⁄ ⌉). Assume that you add to the sample one 

more observation, whose value is 𝑂. The new mean becomes: 

𝑋′ =
𝑋 ⋅ 𝑛 + 𝑂

𝑛 + 1
 

Now, if the two addenda are comparable (e.g., because the sample is small, or 𝑂 is a very large out-

lier), then the mean may change significantly. On the other hand, the new median becomes: 

𝑋0.5
′ = {

𝑋(⌈𝑛 2⁄ ⌉) + 𝑋(⌈𝑛 2⁄ ⌉+1)

2
= 𝑋0.5 +

𝑋(⌈𝑛 2⁄ ⌉+1) − 𝑋(⌈𝑛 2⁄ ⌉)

2
if  𝑂 ≥ 𝑋0.5

𝑋(⌈𝑛 2⁄ ⌉−1) + 𝑋(⌈𝑛 2⁄ ⌉)

2
= 𝑋0.5 −

𝑋(⌈𝑛 2⁄ ⌉) − 𝑋(⌈𝑛 2⁄ ⌉−1)

2
if  𝑂 ≤ 𝑋0.5

 

Note that 𝑂 does not appear in the final result, hen 𝑂 ce the median is unaffected by the magnitude 

of. The differences cannot be large (they could even be null, if the two consecutive values in the or-

dered statistics are equal), hence the new median is unlikely to be much different from the previous 

one. 
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2.2.2 Indexes of dispersion 

As for the indexes of central tendencies that we have seen so far, there are alternatives for indexes 

of dispersion. The most common are: 

- Range; 

- Sample Variance, Sample Standard Deviation and Sample Coefficient of Variation; 

- 10th and 90th percentiles; 

- Semi interquartile range; 

- Mean Absolute Deviation and Lorenz Curve Gap. 

 

The range is the difference between the maximum and the minimum, i.e. 𝑋(𝑛) − 𝑋(1). This value 

should not be used, unless there is reason to believe that the RV we are sampling is bounded, and 

we need to estimate those bounds. Otherwise, the range will tell you nothing significant. In fact, it 

will: 

- be equal to a very large outlier minus zero, if the variable is non negative; 

- keep growing with 𝑛 (thus, it is unstable); 

- reveal nothing about what happens between the two extremes. 

 

Define now the sample variance as: 

𝑆2 =
∑ (𝑋𝑖−𝑋)

2𝑛
𝑖=1

𝑛−1
   (yes, it’s 𝑛 − 1) 

𝑆2 is a RV as well. To compute its expectation, it is convenient to observe that: 

(𝑛 − 1) ⋅ 𝑆2 =

∑(𝑋𝑖 − 𝑋)
2

𝑛

𝑖=1

=

∑(𝑋𝑖
2 + 𝑋

2
− 2𝑋𝑖 ⋅ 𝑋) =

𝑛

𝑖=1

∑𝑋𝑖
2

𝑛

𝑖=1

+ 𝑛 ⋅ 𝑋
2
− 2𝑋 ⋅∑𝑋𝑖

𝑛

𝑖=1

=

∑𝑋𝑖
2

𝑛

𝑖=1

+ 𝑛 ⋅ 𝑋
2
− 2 ⋅ 𝑛 ⋅ 𝑋

2
=

∑𝑋𝑖
2

𝑛

𝑖=1

− 𝑛 ⋅ 𝑋
2

 

And take the expectation of both sides: 
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(𝑛 − 1) ⋅ 𝐸[𝑆2] = ∑𝐸[𝑋𝑖
2]

𝑛

𝑖=1

− 𝑛 ⋅ 𝐸 [𝑋
2
]

= 𝑛 ⋅ 𝐸[𝑋𝑖
2] − 𝑛 ⋅ 𝐸 [𝑋

2
]

= 𝑛 ⋅ [𝑉𝑎𝑟(𝑋𝑖) + 𝐸[𝑋𝑖]
2] − 𝑛 ⋅ [𝑉𝑎𝑟(𝑋) + 𝐸[𝑋]

2
]

= 𝑛 ⋅ [𝜎2 + 𝜇2] − 𝑛 ⋅ [
𝜎2

𝑛
+ 𝜇2]

= (𝑛 − 1) ⋅ 𝜎2

 

Thus, 𝐸[𝑆2] = 𝜎2, therefore the expectation of the sample variance is the population variance. 

The reason why there is 𝑛 − 1 instead of 𝑛 is that only 𝒏 − 𝟏 of the differences (𝑋𝑖 − 𝑋) are inde-

pendent. The 𝑛-th one depends on the others, since ∑ (𝑋𝑖 −𝑋)
𝑛
𝑖=1 = 0. It is normally said that the 

number of degrees of freedom for the variance is 𝑛 − 1 for a sample of 𝑛.  

 

The sample standard deviation is the square root of the sample variance, of course.  

 

It is also common to use the sample coefficient of variation (CoV), defined as: 

𝐶 = 𝑆 𝑋⁄ . 

The sample CoV can be expected to approximate the population CoV, which is 𝜒 = 𝜎 𝜇⁄ . Note that 

it is only meaningful for non-negative distributions that have a well-defined unit, such as mass, 

length, etc. – often called “ratio-scale” measures since it makes sense to take ratios of measures3. 

For these, the CoV is bounded by 0 ≤ 𝐶 ≤ √𝑛 − 1. This may represent a problem in practical cases. 

There are cases of distributions whose variance is infinite (heavy-tailed distributions). These can 

be observed more frequently than you might expect. If you are dealing with such a distribution, then 

there is a risk that the CoV will increase indefinitely with the sample width. In this case, comparing 

alternatives through the CoV may be altogether meaningless.  

An interesting fact is that the CoV for an exponential RV should be equal to 1, whatever its parame-

ter 𝜆. This will be useful later on, when we talk about fitting.   

 

 

3 Typical non-ratio-scale measures are temperature and dates. Both are defined in terms of arbitrary reference points 

(e.g., freezing and boiling points of water for temperature), which are arbitrary offsets. Now, the variance is insensitive 

to offsets, whereas the mean is. Therefore, the CoV will depend on the (arbitrary) reference point. This is why it makes 

no sense to define a CoV for non-ratio scale measures. They are called non-ratio-scale measures because you cannot 

state that 20 degrees is twice as hot as 10 degrees, hence it makes no sense to compute ratios of temperatures, or dates. 
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The CoV is normally used only with continuous distributions. Its homologous for non-negative 

discrete distributions is the sample Index of Dispersion (IoD), sometimes called Lexis Ratio, de-

fined as 𝐿 = 𝑆2 𝑋⁄  (which approximates the population IoD Λ = 𝜎2 𝜇⁄ ). You can easily check that 

this coefficient is: 

- equal to 1 for a Poisson RV; 

- smaller than 1 for a Binomial RV (equal to 1 − 𝑝); 

- larger than 1 for a Geometric RV (equal to 1/𝑝). 

Note that both the CoV and the IoD tend to be unstable if the sample mean is close to zero.  

 

(Sample) percentiles (or quantiles) can be computed from the ordered statistics. Note the distinc-

tion: you normally denote percentiles with a percentage, and quantiles with a fraction (i.e., the 0.9 

quantile is the same thing as the 90-percentile).  

Strange as it may seem, there is no standard way to compute percentiles. There are three or four 

different ways, whose results agree when the sample is large. However, significant differences can 

be observed on small samples, depending on the algorithm used.  

Assume you have a sample of 5 as in the table: 

 

Ord. stat. 𝑋(1) 𝑋(2) 𝑋(3) 𝑋(4) 𝑋(5) 

 

You can readily state that the 20th percentile is 𝑋(1), but you have a hard time understanding what 

the 35th percentile would be. Commonly used alternatives: 

- the next higher (i.e., 𝑋(2) in this case). If you have a sample of 𝑛 and are looking for the 𝑝-

quantile, then you take  𝑋(⌈𝑛⋅𝑝⌉); 

- some linear interpolation of the two adjacent values (i.e., the point on the line passing through 

(20, 𝑋(1)) and (40, 𝑋(2)) at abscissa 35); 

- Microsoft Excel uses yet another approximation. 

If you are looking at a specific percentile and you have ordered statistics, then use 𝑋(⌈𝑛⋅𝑝⌉). Some-

times the reverse is required. You have ordered statistic 𝑋(𝑗), and you need to assign it a percentile 

(this will be useful later on). This is tricky, since – according to the definition of percentile that we 

use – all percentiles from 0% to 20% are the same value 𝑋(1).  

In this case, the correct procedure is to consider the range of the ordered statistics and divide it into 

𝑛 consecutive buckets of equal width. Each ordered statistics is considered to represent the mid-

point of the bucket, and that is the percentile you assign to it.  
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In the above example: 

Ord. stat. 𝑋(1) 𝑋(2) 𝑋(3) 𝑋(4) 𝑋(5) 

Bucket 0-20 20-40 40-60 60-80 80-100 

Midpoint 10 30 50 70 90 

 

In other words, if you have a sample of 5, then you have the 10th, 30th, 50th, 70th and 90th percentile 

of the sample.  

This is equivalent to assigning quantile 
𝑗−0.5

𝑛
 to 𝑋(𝑗). 

Note that assigning another point in the bucket (e.g., the initial or final point) is conceptually 

wrong. If, for instance, you assign the upper end of the bucket interval as the percentile, you im-

plicitly state that no observation can be higher than 𝑋(5). This is a bold, unwarranted claim. The re-

verse holds if you use the lower end, this time stating that 𝑋(1) is the minimum. 

 

The semi-interquartile range is the difference (𝑄3 − 𝑄1) 2⁄ , i.e. half the box height in a box plot. 

 

The Lorenz Curve Gap i.e. the maximum vertical distance between the bisector (the line of maxi-

mum fairness) and the LC. The formula is: 

 

𝐿𝐶𝐺 = max1≤𝑗≤𝑛 (𝑗 𝑛⁄ −∑ 𝑋(𝑖)
𝑗

𝑖=1
𝑛 ⋅ �̅�⁄ ) =

1

2𝑋
∙
∑ |𝑋𝑖 − 𝑋|
𝑛
𝑖=1

𝑛
 

 

The second term of the above formula, i.e., 
∑ |𝑋𝑖−𝑋|
𝑛
𝑖=1

𝑛
, is called mean absolute deviation (MAD). 

The LCG resembles the CoV, in that it normalizes a measure of variability (i.e., the MAD) to an in-

dex of central tendency (i.e., the sample mean). However, the LCG varies in 0 ≤ 𝐿𝐶𝐺 ≤ 1 − 1 𝑛⁄ . 

The last equality can be proved (it’s not 

that difficult). You are welcome to try. 
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This means that, whatever the distribution (even a heavy-tailed one), the LCG will always be finite, 

unlike the CoV.  

 

With indexes of dispersion, like with indexes of central tendencies, it is important to know when to 

use one or the other. Let us review our options: 

- regarding robustness to outliers, the range is by far the most vulnerable. Any outlier will 

change it significantly. The variance and STD may also be affected by outliers. The IQR is al-

most insensitive to outliers.  

- If your variable is bounded (hence outliers cannot happen), the range may be the best choice. 

- Otherwise, if your variable is symmetric and unimodal, then the variance (or STD, or CoV) 

may be a good choice, unless the distribution has heavy tails, in which case the LCG is prefera-

ble. 

- If your RV is highly skewed and/or outliers are likely, then the percentiles and the IQR are more 

representative of the variability (much as the median would best represent central tendencies 

than the mean). 

 

Exercise (to be done using Excel) 

Take a sample of a suitably large number of IID RVs. Have students  

- plot the sample in various ways 

- determine and discuss its indexes of central tendencies  

- determine and discuss its indexes of dispersion 

 

2.3 Fitting a distribution 

A good way to summarize a sample is to state from what distribution it is (likely to be) sampled. 

For instance, saying that your sample has a mean of 13 and a variance of 48 says considerably less 

than saying that it is ~𝑈(1,25). The problem is how to choose the theoretical distribution your 

sample should fit. 

Quite often, the choice is not entirely wild, since you might have at least a rough idea of the under-

lying phenomena that generated the sample. 

If, instead, you are completely in the dark, you may start sorting out the sheep from the goats by 

using two very simple tricks: 

- compute statistics for your sample; 

- draw histograms. 
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Computing statistics means computing the sample mean, median, variance, CoV. For instance, if 

the sample mean and median are approximately equal, then there is a good chance that we are 

dealing with a symmetric distribution, hence we can put this result to good use when choosing the 

distribution to fit our to. If, instead, the mean and the median are significantly different, whether 

one or the other is larger will tell us whether the distribution is skewed to the left or to the right. 

The CoV/IoD can be useful as well. For instance, in an exponential distribution it is equal to 1, 

regardless of the value of the 𝜆 parameter. If you obtain a sample CoV close to one, you may want 

to test whether your sample is exponentially distributed. If your distribution is discrete, you may use 

the sample IoD to discriminate whether it is Poisson, Binomial or Geometric. 

 

Drawing histograms (with the rules previously discussed) will allow you to estimate the PDF or 

PMF. Some of them have a shape which is easily recognizable (the exponential, the Normal, the 

uniform, etc.), hence this will point you in the right direction.  

Note that we did not mention comparing the ECDF with the one of the theoretical distribution. 

This should never be done, since most CDFs have an S shape, and it is visually very difficult, if 

possible at all, to distinguish one kind from another. You can easily recognize the exponential and 

the uniform ones, of course, since they are not S-shaped, but everything else will be very difficult.  

 

Once you have selected one or few candidates, the easiest way to test whether your distribution 

fits the theoretical one is to make a visual test, using QQ plots. QQ plots have: 

- on the x axis, the quantiles of the “theoretical” distribution 𝑡(1−𝑖); 

- on the y axis, the quantiles of your sample 𝑞(1−𝑖). 

Thus, every point is (𝑡(1−𝑖), 𝑞(1−𝑖)), where 𝑖 is the quantile level.  

The visual test is the following: if the QQ plot is approximately a straight line, then the assump-

tion that your sample follows that theoretical distribution is consistent with your sample data 

(whether it is true or not it is an entirely different kettle of fish). 

 

If the theoretical distribution has an invertible CDF, then its quantiles can be computed quite easi-

ly. In fact, since  𝑝 = 𝐹(𝑥), then 𝑡(1−𝑖) = 𝐹
−1(𝑖). For instance, the i-quantile of an exponential with 

a rate 𝜆 is obtained by solving 𝑖 = 1 − 𝑒−𝜆⋅𝑡(1−𝑖), i.e. 𝑡(1−𝑖) = − log(1 − 𝑖) 𝜆⁄ . 
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If the CDF is not known in a closed form (e.g., the Normal one), then its quantiles can be obtained 

from tables, so it is not a big problem in any case. For the Standard Normal, a good approxima-

tion, which is often used in practice, is the following expression: 

𝑡(1−𝑖) ≅ 4.91[𝑖
0.14 − (1 − 𝑖)0.14] 

Of course, should you need quantiles for a non-standard Normal 𝐹~𝑁(𝜇, 𝜎), then you simply use 

the results of the above formula and transform them as 𝑡(1−𝑖)′ = 𝜇 + 𝜎 ⋅ 𝑡𝑖. 

 

Exercise (to be done using Excel):  

Check if the above formula is a good approximation (it is: its relative error oscillates between -0.3% 

and +0.7%, hence it is negligible). 

 

 

The interesting thing about QQ plots is that quite often you don’t need to know the parameters of 

the theoretical distribution, e.g. 𝜇, 𝜎 for a Normal or 𝜆 for an exponential. This happens every 

time the effect of the parameter is to rescale or offset the quantiles (as in the above two cases). 

If this is the case, assuming a default value for the parameter will still give you a straight line, 

whose slope and offset will change if you change the parameters. However, the linear pattern will 

still be there, so there is no need to worry.  

 

Example 

Considering the following sample of 8, and check if it is normally distributed. 

 

j 
Quantile 
number ord. Stat normal q 

1 0.0625 -0.19 -1.535 

2 0.1875 -0.14 -0.885 

3 0.3125 -0.09 -0.487 

4 0.4375 -0.04 -0.157 

5 0.5625 0.04 0.157 

6 0.6875 0.09 0.487 

7 0.8125 0.14 0.885 

8 0.9375 0.19 1.535 

 

The first thing is to compute the ordered statistics. Then we assign them quantiles  
𝑗−0.5

𝑛
. Then, we 

use the above formula to obtain the quantiles of the standard Normal. Finally, we plot the graph. 

1 2 3 
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The graph shows a good linearity. The regression analysis (which is automatic with Excel) com-

putes the mean to be (almost) null, and the standard deviation to be around 0.1369. 

 

Note that assigning the wrong quantiles gets you completely different results. Assume, in fact, that 

we use the upper end of the bucket, i.e., 
𝑗

𝑛
. Then the thing would look like this: 

 

j 

(wrong) 
Quantile 
number ord. Stat Normal q 

1 0.125 -0.19 -1.14921 

2 0.25 -0.14 -0.67234 

3 0.375 -0.09 -0.3173 

4 0.5 -0.04 0 

5 0.625 0.04 0.317299 

6 0.75 0.09 0.672345 

7 0.875 0.14 1.149208 

8 1 0.19 4.91 

 

y = 0.1369x + 7E-19

R2 = 0.9747
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Linearity is somewhat distorted, and there is a large outlier at the far right. This is due to our assum-

ing that: 

- the highest-order statistic is representative of the 100% percentile, which it is not 

- the approximate formula for the standard Normal quantile is reliable for a 100% quantile, which 

it is not (the 100% quantile of a standard Normal is +∞).  

However, if you remove the outlier, then you get approximately the same result as before: 

 

 

It is often the case that the QQ plot shows an approximately linear behaviour in the middle, with 

some deviation at the tails. This is indicative of the fact that tails may be longer or shorter than 

those of the theoretical distribution.  

The following graph shows the same sample as above, to which two small and two large observa-

tions have been added, which are almost equal to the previous sample minimum and maximum. The 
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S shape is typical of a case with shorter tails than a Normal. This happens quite often, since in 

many cases variables are bounded (due to physical or measurement constraints) and the Normal 

distribution has infinite tails instead. If it happens, test for a uniform distribution, which appears 

to be likely.   

 

If, instead, the tails of the Normal QQ plot go up and down (instead of flattening), then there is a 

chance that a distribution with heavier tails may yield a better fit. Try lognormal or Pareto. We 

have seen neither of these, but they may help. 

 

Just as a counterproof, we might want to check whether our initial sample of 8 matches a uniform 

distribution. We might as well assume U(0,1), since we have already ascertained that this changes 

nothing. The QQ plots is the following: 
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Our sample shows almost perfect linearity. This means that the above sample could equally well 

have been taken from:  

- a Normal distribution with a null mean and a std of around 0.13 

- a uniform distribution 𝑈(−0.203,+.203) 

How to discriminate the two cases? In this case the solution is simple: get a larger sample. Eight 

points are not nearly enough to make a difference.  

Note that there are other tests, relying on algebra, to assess whether or not data from a sample can 

be matched to a given distribution. The most well-known ones are: 

- Chi squared test 

- Kolmogorov-Smirnoff test 

They are not easy to use, since they require a lot of hypotheses and a lot of practice to interpret the 

results. QQ plots should be preferred when possible. Moreover, these require that the matching 

theoretical distribution be entirely specified: in other words, you cannot just check whether or 

not your data has a Normal distribution. You can only test against a Normal distributon with 

mean 𝝁 and variance 𝝈𝟐, which you need to estimate beforehand.  

2.4 Confidence intervals 

As part of the scientific method, you are duty-bound to show the accuracy of a measurement 

whenever you produce one. This is something that engineers (and scientists as well) often forget to 

do, which makes their statements unverifiable and ultimately not credible. You can lie blatantly by 

omitting to state the accuracy of a measurement. For instance, you can claim that a system performs 

better than another, when in fact your sample data do not support this statement. 

The point is that, when you have random variables and samples, you never know how much of 

the result that you are claiming is due to luck, i.e., to the fact that you happened to hit on a particu-

larly lucky sample (recall that sampling is a random experiment), and how much it is an intrinsic 

property that you would like to prove.  



. .A

B

 

 

 

Assume that you get two samples of the same measure from two systems A 

and B, and you compute the sample mean for both systems, let it be �̅�, �̅�. 

You find that �̅� > �̅� . Since the sample means estimate the population 

means, you conclude that system A performs better than B. However, if 

you manipulate your data, you can obtain that the interval where you have 

95% probability of finding the population means 𝜇𝐴, 𝜇𝐵 are as shown in 

the figure. When you quantify (by inserting the 95% confidence interval) 

the accuracy of your statistic (i.e., the sample mean), your former conclu-

sion (“A is better than B”) simply does not hold anymore. It could well be 

that 𝜇𝐴 < 𝜇𝐵. Your data do not allow you to tell whether 𝜇𝐴 < 𝜇𝐵 or 𝜇𝐴 ≥

𝜇𝐵. It may be that your samples are too small, or that the data is too varia-

ble, or that you require too high a confidence level (95% in this case). 

 

. .A

B

 

Of course, if this were the case, instead, then your statement “A is better 

than B” would be entirely justified by your data (at the given confi-

dence level).  

 

Every statistic taken from a sample is itself a random variable. Therefore, its accuracy must be 

quantified and reported in the form of a confidence interval. Always, no matter what. 

 

We say that [𝑙, ℎ]  is a confidence interval for parameter 𝜇  at level (1 − 𝛼)  if 𝑃{𝑙 ≤ 𝜇 ≤ ℎ} ≥

(1 − 𝛼).  

A confidence interval at level (1 − 𝛼) is an interval where you have a probability at least (1 − 𝛼) 

to find the parameter that you are estimating using your sample statistics. Value (1 − 𝛼) is called 

the confidence level, and values such as 90%, 95%, 98%, 99% are normally used. We will come 

back later to the choice of an appropriate confidence level for a problem. 

 

Confidence intervals are computed differently from a sample of IID RVs, depending on what pa-

rameter you want to estimate. We present a method for the population mean, and one for the 

probability of success of a Bernoulli experiment. 

Once again, we need to stress that all the methods described so far, as well as those we are yet to 

see, only hold under the assumption that the sample consists of IID RVs. This is something that 
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has to be ensured before even starting; otherwise you will obtain false conclusions. We will see lat-

er on how to verify or obtain IIDness for your sample. 

2.4.1 Confidence interval for the population mean 

Assuming that the population we are dealing with has a finite mean and variance, we have de-

fined the sample mean to be: 

𝑋 =
1

𝑛
⋅∑ 𝑋𝑖

𝑛

𝑖=1
 

And found that 𝐸[𝑋] = 𝜇,  𝑉𝑎𝑟(𝑋) = 𝜎2 𝑛⁄ , i.e., the larger the sample, the more 𝑋 converges to a 

Dirac’s delta around 𝜇.  

We know that, at least for a large value of n, 𝑋 is Normal (due to the CLT), whatever the CDF of 

𝑋1, . . . , 𝑋𝑛. If 𝑋1, . . . , 𝑋𝑛 are themselves Normal, then 𝑋 is Normal for any value of 𝒏. 

 

One (very inefficient) way of computing a 90%-CI for the sample mean is the following: take k in-

dependent samples of 𝑛 observations each (e.g., take a sample of 𝑛 ⋅ 𝑘 observations and slice it into 

𝑘 samples of 𝑛), compute the sample means of each of the k samples, call them 𝑋1, . . . , 𝑋𝑘. You can 

then compute the 0.05-quantile and the 0.95-quantile of the above sample means. This is a confi-

dence interval for the population mean at a confidence of 90% (i.e., removing the two 5% tails). 

However, this method is inefficient, in that it requires too many observations. 

 

A more efficient use of the amount of information that is inherent in a sample of 𝑛 IID RV can be 

done by leveraging the sample variance. We have defined the sample variance as: 

𝑆2 =
∑ (𝑋𝑖 − 𝑋)

2𝑛
𝑖=1

𝑛 − 1
 

And found that 𝐸[𝑆2] = 𝜎2.  

If the sample is large (i.e., 𝒏 ≥ 𝟑𝟎), and only in this case, then  

𝑋 − 𝜇

𝜎 √𝑛⁄
~𝑁(0,1) 

Note that we do not know 𝜎, which is an unknown population parameter. However, we can estimate 

it using 𝑆2. Therefore, we can hope that  

𝑍 =
𝑋 − 𝜇

𝑆 √𝑛⁄
~𝑁(0,1) 
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if 𝑛 is large. In this case the (symmetric) interval that defines an area equal to (1 − 𝛼) in the stand-

ard Normal, is in the figure. The point that leaves out a right tail with an area equal to 0.025, i.e. the 

one such that 𝑃{𝑍 > 𝑧0.025} = 0.025, is the 97.5%-percentile of the standard Normal, and you can 

find it tabulated at the end of these notes. 

 

Therefore, the interval [−𝑧0.025, 𝑧0.025] includes RV 
𝑋−𝜇

𝑆 √𝑛⁄
 with 95% probability. More in general, 

you take the (1 − 𝛼 2⁄ ) percentile of the standard Normal, and you can write 

𝑃 {−𝑧𝛼 2⁄ ≤
𝑋 − 𝜇

𝑆 √𝑛⁄
≤ +𝑧𝛼 2⁄ } = (1 − 𝛼) 

Therefore, via some straightforward algebraic manipulations, we obtain: 

𝑃 {𝑋 −
𝑆

√𝑛
⋅ 𝑧𝛼 2⁄ ≤ 𝜇 ≤ 𝑋 +

𝑆

√𝑛
⋅ 𝑧𝛼 2⁄ } = 1 − 𝛼 

The (1 − 𝛼)-level confidence interval for the population mean is the interval 

[𝑋 −
𝑆

√𝑛
⋅ 𝑧𝛼 2⁄ , 𝑋 +

𝑆

√𝑛
⋅ 𝑧𝛼 2⁄ ] 

It is worth repeating that the above computations only hold if: 

- the population has a finite variance 

- the sample is large (>30) 

And that the above assumptions should be tested before using the method. For instance, if your 

sample variance keeps increasing with the width of the sample, this is a clear indication that the var-

iance may be unbounded. In this case, the CLT does not work, hence you cannot compute a CI for 

the mean using the above technique. Note that in this case, the sample mean is considerably less 

significant than the median, for which you can always compute a CI4.  

 

 

4 The procedure to compute a CI for the population median is described on J.-Y. Le Boudec’s book, see the references 

at the beginning of this batch of notes. 

Z 



Notes on data analysis (student version) – Giovanni Stea – last saved 30/10/2022 17:48:00 

 

30 

 

If, instead, the sample is small (i.e., 𝑛 < 30), then you can still apply a similar method, but it works 

only if the population consists of Normal RVs. Note that Normal RVs have finite variance. The 

assumption of Normality can (hence must) be tested beforehand using a QQ plot, of course.  

 

We take for granted (because it is boring to prove it) that, for Normal RVs, it is (𝑛 − 1) ⋅

𝑆2 𝜎2⁄ ~𝜒𝑛−1
2 , i.e. the LHS expression, which includes the sample variance is distributed like a chi-

square with 𝒏 − 𝟏 degrees of freedom. Moreover, 𝑋 and 𝑆2 are independent RVs. As a conse-

quence of these findings, you have that: 

𝑇 =
𝑋 − 𝜇

𝑆 √𝑛⁄
 

is a Student’s T distribution with n-1 degrees of freedom, 𝑇~𝑡𝑛−1. In fact: 

1) 
𝑋−𝜇

𝜎 √𝑛⁄
~𝑁(0,1) (which we know to be true, since we assumed 𝑋𝑖s to be Normal) 

2) (𝑛 − 1) ⋅ 𝑆2 𝜎2⁄ ~𝜒𝑛−1
2  (which we give for granted under the same assumption) 

and: 

𝑇 =

𝑋 − 𝜇

𝜎 √𝑛⁄

√[(𝑛 − 1) ⋅ 𝑆2 𝜎2⁄ ] (𝑛 − 1)⁄

=
𝑋 − 𝜇

𝑆 √𝑛⁄
⋅
𝜎

𝜎

=
𝑋 − 𝜇

𝑆 √𝑛⁄

 

 

This is promising, since we can repeat the same reasoning as before, with the only change that we 

need the percentiles of a Student’s T distribution. These can be found at the end of every probability 

textbook (and of these notes as well). Therefore, we immediately obtain: 
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𝑃 {𝑋 −
𝑆

√𝑛
⋅ 𝑡𝛼 2⁄ ,𝑛−1 ≤ 𝜇 ≤ 𝑋 +

𝑆

√𝑛
⋅ 𝑡𝛼 2⁄ ,𝑛−1} = 1 − 𝛼 

Or, if you prefer 

[𝑋 −
𝑆

√𝑛
⋅ 𝑡𝛼 2⁄ ,𝑛−1, 𝑋 +

𝑆

√𝑛
⋅ 𝑡𝛼 2⁄ ,𝑛−1] 

Is the CI for the population mean at confidence level (1 − 𝛼). Of course, the larger the sample, the 

higher the number of degrees of freedom in the Student’s T distributions, hence the smaller the per-

centiles 𝑡𝛼 2⁄ ,𝑛−1 will be. Note that, when 𝑛 ≥ 30, the Student’s T distribution and the Normal over-

lap, therefore this method ends up being the same as the other.  

Note that the CI depends on 𝑛 through: 

- Value 𝑡𝛼 2⁄ ,𝑛−1: the higher 𝑛, the smaller the value (hence the smaller the CI). However, it is 

lim
𝑛→∞

𝑡𝛼 2⁄ ,𝑛−1 = 𝑧𝛼 2⁄ , so there is a lower bound. 

- √𝑛 at the denominator, so the higher 𝑛, the smaller the CI. 

- Possibly �̅�, 𝑆, which can be however expected to be stable with n. 

This means that the CI is expected to get smaller when we increase the sample width. 

 

Exercise 

Suppose that a signal having value 𝜇 is transmitted from location 𝐴. The value received at location 

B is subject to a Normal noise with null mean and an unknown variance 𝜎2. To reduce the decoding 

error, suppose the same value is sent 9 times. The successive values received are 5, 8.5, 12, 15, 7, 9, 

7.5, 6.5, 10.5. 

a) construct a 95% CI for 𝜇. 

b) Repeat the above, assuming that the variance is known and equal to 𝜎2 = 4 

c) Is it possible to state in advance whether one of the two confidence intervals will be smaller 

than the other? 

 

Solution 

The sample is small. However, it consists of Normal RVs (by definition). Therefore, we can apply 

the above method. 

a) In order to compute a confidence interval, one has to compute the sample mean and sample vari-

ance. These are: 

�̅� =
5 + 8.5 + 12 + 15 + 7 + 9 + 7.5 + 6.5 + 10.5

9
= 9 
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𝑆2 =
∑ 𝑥𝑖

2𝑛
𝑖=1 − 𝑛 ⋅ �̅�2

𝑛 − 1
= 9.5 

Then, we have to compute the values such that: 

𝑃 {−𝑡𝛼 2⁄ ,𝑛−1 ≤
𝑋 − 𝜇

𝑆 √𝑛⁄
≤ 𝑡𝛼 2⁄ ,𝑛−1} = (1 − 𝛼)

 

𝑃 {𝑋 −
𝑆

√𝑛
⋅ 𝑡𝛼 2⁄ ,𝑛−1 ≤ 𝜇 ≤ 𝑋 +

𝑆

√𝑛
⋅ 𝑡𝛼 2⁄ ,𝑛−1} = 1 − 𝛼

 
With 𝛼 = 0.05. This means that 𝑆 = 3.082, 𝑡0.025,8 = 2.306, and the interval is (6.63; 11.37). 

 

b) Assume now that we know the variance to be 𝜎2. Then computations are different. More specif-

ically,  

𝐺 =
𝑋 − 𝜇

𝜎 √𝑛⁄
~𝑁(0,1) 

since the sample mean is a Normal RV, and no other RVs are involved. Therefore, we can evaluate 

a confidence interval using the standard Normal in place of a Student’s T with 𝑛 − 1 degrees of 

freedom: 

𝑃 {−𝑧𝛼 2⁄ ≤
𝑋 − 𝜇

𝜎 √𝑛⁄
≤ +𝑧𝛼 2⁄ } = 1 − 𝛼

 

Hence: 

𝑃 {𝑋 −
𝜎

√𝑛
⋅ 𝑧𝛼 2⁄ ≤ 𝜇 ≤ 𝑋 +

𝜎

√𝑛
⋅ 𝑧𝛼 2⁄ } = 1 − 𝛼

 

With the above values, we have 𝑧𝛼 2⁄ = 1.96 and the interval is (7.69; 10.31), which is smaller than 

the former. 

 

c) Note that 𝑧𝛼 2⁄ < 𝑡𝛼 2⁄ ,𝑛−1, (in fact, it is 𝑧𝛼 2⁄ = lim
𝑛→∞

𝑡𝛼 2⁄ ,𝑛−1, the limit value being approached 

from above), hence the confidence intervals might, in principle, be expected to be smaller when the 

variance is known. However, we cannot be sure whether 𝑆 =
>

<
𝜎, and this may make one confi-

dence interval smaller than the other. In this case, we have 𝜎 < 𝑆, but it needs not be so. You may 

still have a large population variance and pick up a sample consisting of values which are quite 

close to the mean, so as to have 𝑆 < 𝜎.  
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We need to reflect a bit on what confidence intervals really are. A confidence interval is a random 

measure, whereas the estimated parameter is a(n unknown) constant. Therefore, computing the 

95% CI for the population mean means the following: 
 

If we take 100 different samples, and compute the CI for the population mean, then 95 times out of 

100 the population mean will be within that CI, and 5 times it will be outside that CI.  

2.4.2 Confidence intervals and paired experiments  

A common use of CIs is to test if a measure is significantly different from zero. This happens, for 

instance, with paired experiments.  

Paired experiments are when two systems 𝐴 and 𝐵 are given in input the same workloads and 

measured for the same statistics (e.g., a response time). This is a frequent case.  

In this case, one gets two paired samples, namely the 𝑛 responses of 𝐴 and those of 𝐵. However, 

since there is a 1:1 correspondence between each point in the sample, one can compute the differ-

ence of the responses for each experiment.  

If that difference is significantly different from 0, i.e., if the confidence interval for its mean does 

not include 0, then we can be sure that one system is better than the other. Otherwise we cannot. 

 

Example 

Consider a paired experiment where systems 𝐴 and 𝐵 

are given the same six workloads as an input. Their re-

sponse times are measured, and the measures are as in 

the table. Explain if 𝐴  is better than 𝐵  with a confi-

dence of 90%. 

 

 𝑨 𝑩 difference 

1 5.4 19.1 -13.7 

2 16.6 3.5 13.1 

3 0.6 3.4 -2.8 

4 1.4 2.5 -1.1 

5 0.6 3.6 -3 

6 7.3 1.7 5.6 

Avg. 5.32 5.63 -0.32 

Var. 38.22 44.06 81.62 

Std 6.18 6.64 9.03 

 

Before we even start: is it possible at all that you get so different response times from two systems? 

Yes, if your experimental errors are high. For instance, there may be interrupts, disk swaps, etc., 

which may influence the response time considerably. 

Can we be sure that the samples include IID observations? It depends on how we made the experi-

ments. If we have taken care that the result of an experiment cannot influence the next outcome 

(e.g., because we have reset the system to its initial state after each experiment), then the assump-

tion of IID-ness is reasonable.  



Notes on data analysis (student version) – Giovanni Stea – last saved 30/10/2022 17:48:00 

 

34 

 

 

The mean difference appears to be below zero, which may indicate that 𝐴 is faster than 𝐵. However, 

the variability is high, and the sample is small, which means that it is unlikely that we can be too 

sure. In order to assess things formally, we need to compute a confidence interval for the mean of 

the difference.  

The sample is small, so we can only do this if the difference is approximately Normal. This 

should be checked visually with a QQ plot. 

 

 

id 
Quantile 
number observed N(0,1) 

1 0.0833 -13.7 -1.383 

2 0.2500 -3 -0.672 

3 0.4167 -2.8 -0.210 

4 0.5833 -1.1 0.210 

5 0.7500 5.60 0.672 

6 0.9167 13.1 1.383 

 

 

The QQ plot confirms that the sample is approximately Normal, hence we can use our method. The 

90% confidence interval is  

[𝑋 −
𝑆

√𝑛
⋅ 𝑡𝛼 2⁄ ,𝑛−1, 𝑋 +

𝑆

√𝑛
⋅ 𝑡𝛼 2⁄ ,𝑛−1] =

[−0.32 −
9.03

√6
⋅ 𝑡0.05,5, −0.32 +

9.03

√6
⋅ 𝑡0.05,5] =

[−7.75,+7.11]

 

Therefore, we cannot say with 90% confidence that 𝐴 is better than 𝐵.  

 

2.4.3 Confidence interval for the success probability 

Assume that you observe a sample of 𝑛 observations, call them 𝑎𝑖, and you are interested only in 

defining the “probability of success” 𝑝. For instance, you may measure response times, and declare 

a success whenever the response time is below a given threshold.  

Therefore, you can define a set of binary outcomes 𝑏𝑖, such that: 

y = 8.9673x - 0.3167

R2 = 0.9494
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𝑏𝑖 = {
1 𝑎𝑖 meets criterion
0 otherwise

 

You can thus estimate the probability of success of the Bernoullian experiment given by observa-

tions 𝑏𝑖. The best estimate of the probability of success of a Bernoulli variable is the sample mean 

of the observations, i.e.:  

�̂� =
∑ 𝑏𝑖
𝑛
𝑖=1

𝑛
=
∑ 1{𝑎𝑖 meets criterion}
𝑛
𝑖=1

𝑛
 

We want to compute a CI for the success probability. The following method yields approximately 

correct results if min{𝑛 ⋅ �̂�, 𝑛 ⋅ (1 − �̂�)} ≥ 6, and the larger the gap the better it works. 

Under the above assumption (which is structurally similar to 𝑛 ⋅ �̂� ⋅ (1 − �̂�) ≥ 10) we obtain that 

the distribution of the number of successes in 𝑛 trials 𝑋 (which is a Binomial RV) is approximately 

Normal, with mean 𝑛 ⋅ �̂� and variance 𝑛 ⋅ �̂� ⋅ (1 − �̂�), i.e., 
𝑋−𝑛⋅𝑝

√𝑛⋅𝑝⋅(1−𝑝)
~𝑁(0,1). 

Therefore,  

𝑃 {−𝑧𝛼 2⁄ <
𝑋 − 𝑛 ⋅ �̂�

√𝑛 ⋅ �̂� ⋅ (1 − �̂�)
< 𝑧𝛼 2⁄ } = (1 − 𝛼) 

Where 𝑧𝛼 2⁄  is the 𝛼 2⁄  percentile of the standard Normal. Or, equivalently, 

𝑃 {−𝑧𝛼 2⁄ ⋅ √𝑛 ⋅ �̂� ⋅ (1 − �̂�) < 𝑛 ⋅ �̂� − 𝑋 < 𝑧𝛼 2⁄ ⋅ √𝑛 ⋅ �̂� ⋅ (1 − �̂�)} = (1 − 𝛼) 

Which in turn yields: 

𝑃 {−𝑧𝛼 2⁄ ⋅ √
�̂� ⋅ (1 − �̂�)

𝑛
< �̂� −

𝑋

𝑛
< 𝑧𝛼 2⁄ ⋅ √

�̂� ⋅ (1 − �̂�)

𝑛
} = (1 − 𝛼) 

What we want to estimate is the probability of success 𝑝 = 𝑋 𝑛⁄ . Therefore, it is obvious that its CI 

with level (1 − 𝛼) is: 

[�̂� − 𝑧𝛼 2⁄
√
�̂�(1 − �̂�)

𝑛
, �̂� + 𝑧𝛼 2⁄

√
�̂�(1 − �̂�)

𝑛
] 

Note that our initial hypothesis, i.e. min{𝑛 ⋅ �̂�, 𝑛 ⋅ (1 − �̂�)} ≥ 6 requires that you get a very large 

sample if you want to compute CIs for a very large/very small success probability. This makes 

perfect sense, of course.  

 

Exercise 

A single experiment was repeated 40 times in independent conditions on two systems A and B. A 

came out to be superior to B 26 times out of 40. Can we say that A is superior to B (i.e., it outper-

forms B more than half the times): 
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- with 99% confidence? 

- with 90% confidence? 

 

Solution 

We estimate �̂� = 26 40 = 0.65⁄ . This is larger than 0.5, which is the threshold above which we 

would like A to be, so we start with a good foot. Moreover, min{𝑛 ⋅ �̂�, 𝑛 ⋅ (1 − �̂�)} = 14, so we are 

on the safe side (note that 𝑛 ⋅ 𝑝 ⋅ (1 − �̂�)~9.1, which is less than we usually require).  

In order to compute the confidence intervals, we compute √�̂� ⋅ (1 − �̂�) 𝑛⁄ = 0.075. Moreover we 

have 𝑧0.005 = 2.576, and 𝑧0.05 = 1.645. Therefore, the required CIs are: 

- at 99% confidence level: [0.46,0.84]. 

- at 90% confidence level: [0.53,0.77]. 

Therefore, we can say that we are 90% sure that A outperforms B, but not 99% sure. Our confi-

dence lies somewhere between 90% and 99%, and can be computed with a bit of algebra if needed. 

We can immediately observe that, had the sample been of 𝑛 = 400 observations, with 𝑘 = 260 

successes (instead of 40 and 26), we would have had the same estimation of the success probabil-

ity, but a much narrower CI. In fact, the CI width would have been 1 √10⁄ ≈ 3.16 times narrow-

er, which means that we would be 99% confident that A is superior to B. The CI width depends on 

the sample width: if you want high confidence and/or narrow intervals, you need a large sample.  

 

2.4.4 Confidence levels and sample width 

The above example raises a fundamental question. What confidence level should we use? Is 90% 

enough? The answer is not hard and fast. When you say that “A is better than B with 90% confi-

dence”, you are saying that you are 90% sure of what you are saying, and that there is a 10% proba-

bility that you are wrong. The same goes for any other level of confidence.  

Most of the times, the confidence level is imposed by the management. In other words, before in-

vesting millions in a new line of hardware, managers may want to be 99.5% sure that this hardware 

is more performing than the competition. 90% will not be enough for them if the risk of making the 

wrong decision leads to losing a lot of money.  

You have to balance the gain (if you are right) against the loss (if you are wrong), and then find a 

confidence level that you can live with.  
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Obviously enough, the confidence interval is connected to the confidence level and the sample 

width. If you want a small CI with a high level of confidence, you have to take a large sample. 

Given an estimate of the sample mean and variance, you can compute the sample width that is 

likely to give you a CI of a pre-specified width. 

 

Assume that you want to estimate the population mean, and you want your (1 − 𝛼)  CI to be 

[(1 − 𝑟) ⋅ �̅�, (1 + 𝑟) ⋅ �̅�], 𝑟 being the relative accuracy (e.g., 10%), and �̅� being the current esti-

mate of the sample mean. How large a sample do you need? Assuming 𝑛 > 30 (so that we can use 

the Normal approximation), we equate the upper extreme of the CI to (1 + 𝑟) ⋅ �̅�  (this works if �̅� is 

positive. If it is negative, the upper extreme of the CI should be equated to (1 − 𝑟) ⋅ �̅�) : 

�̅� + 𝑧𝛼 2⁄ ⋅
𝑆

√𝑛
= (1 + 𝑟) ⋅ �̅� 

From the above, via some straightforward computations, you get: 

𝑛 = (
𝑧𝛼 2⁄ ⋅ 𝑆

𝑟 ⋅ �̅�
)
2

 

Note that this sample might not be sufficient, since, when you add observations, �̅� and 𝑆 are sub-

ject to change. Therefore, you may end up with an insufficient sample (or too large a sample). 

However, the result is representative if the initial estimates are good. 

Moreover, note that the required sample width grows with: 

- the required confidence level  

- the variability of the data, as summarized by 𝑆 

- the required precision, as represented by 𝑟, all of which are pretty obvious 

- the inverse of the sample mean, which is not so obvious. If �̅� is close to zero, in fact, asking 

for a given relative precision may be too constraining, and may require a huge sample. 

For instance, if �̅� = 0.01, we will need 100 times as many points as for �̅� = 0.1, all else being 

equal (i.e., for the same variance, precision and confidence level). Therefore, do not use relative 

precision if the absolute value �̅� is too close to zero. 

 

Exercise 

Two packet forwarding algorithms 1 and 2 are believed to exhibit 0.5% and 0.6% loss rate. How 

many packets do we need to observe to state that 1 is better than 2 with 95% confidence? 

 

Solution 



Notes on data analysis (student version) – Giovanni Stea – last saved 30/10/2022 17:48:00 

 

38 

 

If we want to uphold the above claim, the CIs for the success probabilities of A and B should not 

overlap. Therefore, we must ensure that the upper limit of 1’s CI is below the lower limit of 2’s 

CI.  0.5% and 0.6% are “success probabilities”, hence we can use the related formulas.  

𝑝1̂ + 𝑧𝛼 2⁄
√
𝑝1̂(1 − 𝑝1̂)

𝑛
≤ 𝑝2̂ − 𝑧𝛼 2⁄

√
𝑝2̂(1 − 𝑝2̂)

𝑛
 

√
𝑝2̂(1 − 𝑝2̂)

𝑛
+ √

𝑝1̂(1 − 𝑝1̂)

𝑛
≤
𝑝2̂ − 𝑝1̂
𝑧𝛼 2⁄

√𝑝2̂(1 − 𝑝2̂) + √𝑝1̂(1 − 𝑝1̂)

√𝑛
≤
𝑝2̂ − 𝑝1̂
𝑧𝛼 2⁄

𝑛 ≥ [𝑧𝛼 2⁄ ⋅
√𝑝2̂(1 − 𝑝2̂) + √𝑝1̂(1 − 𝑝1̂)

𝑝2̂ − 𝑝1̂
]

2

 

By putting numbers in the above computations, you get 𝑛 ≥ 84340. Note that, in this case, hypoth-

esis min{𝑛 ⋅ �̂�, 𝑛 ⋅ (1 − �̂�)} ≥ 6 is largely verified for both systems. Therefore, we need to observe 

around 85k packets in order to be 95% sure of the result.   

 

2.5 Testing the assumption of independence 

Assume that you have a sample of 𝑛 IID RVs, and that you compute the sample mean, variance and 

CI for the mean. 

Now answer the following question: suppose that you are measuring a system where (you know 

that) even measures are always equal to the preceding odd measure. In other words, you always get 

the same value twice when you measure something.  

Now, suppose that another system always gives a burst of ten consecutive equal values when 

measured.  

Would it be correct to measure a sample of 𝑛 observations and compute a CI? Recall that the CI 

formula is  

[𝑋 −
𝑆

√𝑛
⋅ 𝑧𝛼 2⁄ , 𝑋 +

𝑆

√𝑛
⋅ 𝑧𝛼 2⁄ ] 

Of course not. This is because you cannot inflate your sample by adding values that do not bring 

any additional information. A correct way to compute the CI would be to take every second (or 

tenth) observation, thus using 𝑛 2⁄  or 𝑛 10⁄  in the above formula. If we forget to do this, we are us-

ing an inappropriately large value for 𝒏, hence we are overestimating our confidence (or un-

derestimating our CI, which amounts to the same thing).  
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This is a (paradoxical) example of what happens when the sample does not consist of IID RVs. The 

assumption of IID-ness implies that the sample contains the maximum possible information that 

can be stored in 𝑛 observations. If observations are not independent, then the amount of infor-

mation at our disposal is smaller, hence our confidence should decrease accordingly.  

 

Everything that we have said so far requires that a sample consists of IID RV. This assumption 

should be verified before even starting to make computations.  

If you have designed your experiments, then it is up to you to ensure that the results are IID. For 

instance, there are methods to do this if you are doing simulations, which we will see later on in 

the course.  

If you are taking measurements on a running system, then the bad news is that it is quite unlikely 

that your observations will be IID. More specifically, fine-grained measures e.g.,  

- the delay of consecutive packets at a switch 

- the response time of two subsequent transactions in a web server 

Are almost invariably positively correlated, hence they are not independent.  

This can be easily explained: if a packet encounters a large delay, it is because it finds many packets 

queued ahead of it. It is highly likely that, when the next packet arrives, the situation will not be 

too different (unless it arrives considerably later in time), since in the meantime the switch will not 

have been able to transmit many packets. Hence the two consecutive delays will be positively cor-

related: low calls for low, high calls for high.  

 

First of all, how do you test the assumption of independence? 

You should test that RVs 𝑋𝑖, 𝑋𝑖+𝑗 have zero correlation, for each 𝑗. A quick, visual test is the lag 

plot. You plot values (𝑋𝑖 , 𝑋𝑖+𝑗)  on a Cartesian plane, and you may be able to observe posi-

tive/negative correlations at some lag 𝑗 (e.g., 𝑗 = 1). Data that are positively correlated tend to 

align on a line going SW-NE. Data that are negatively correlated align NW-SE instead. 

If the lag plot does not show any particular trend, then it is likely that data are independent.  

Note that, if you have a large sample, then you are likely to see a cloud, and be unable to make 

heads or tails of it. In this case, just plot a subset of your sample (e.g., the first 100 consecutive 

points), and see what happens.  
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A more rigorous way is to compute the autocorrelation function for various lags. The population 

autocorrelation function is defined as: 

𝑅(𝑗) =
𝐸[(𝑋𝑖 − 𝜇)(𝑋𝑖+𝑗 − 𝜇)]

𝜎2
 

Autocorrelation is between −1  (perfect anticorrelation) and +1  (perfect correlation). Ideally, it 

should be 𝑅(𝑗) = 0 for any 𝑗 > 0 in order for our observations to be IID. However, we do not know 

either 𝜇 or 𝜎, so we cannot compute it. We can estimate it by computing the sample autocorrela-

tion function, which can be computed automatically by most packages (including MS Excel). This 

is equal to: 

𝑅(𝑗) =

1
𝑛 ⋅
∑ (𝑋𝑖 − 𝑋) ⋅ (𝑋𝑖+𝑗 − 𝑋)
𝑛−𝑗
𝑖=1

𝑆2
 

The latter should be plotted for various lags (e.g., up until 100 or up until meaningful). If |𝑅(𝑗)| is 

small enough, then the assumption that observations are IID can be upheld.  

How small is small enough? The (1 − 𝛼)  CI for the sample autocorrelation coefficients is 

±𝑧𝛼 2⁄ √𝑛⁄ . We are claiming that all the autocorrelation coefficients are null, hence we should 

compute CIs for the autocorrelation coefficients, and see if they include zero. In practice, this is 

equal to computing two straight lines at ±𝑧𝛼 2⁄ √𝑛⁄ , and see if all the values 𝑅(𝑗) are in this interval. 

If they are, we can say that our sample consists of IID RVs with a significance level equal to 

(1 − 𝛼). 

In other words, we cannot reject the null hypothesis that our data are IID with that significance if 

the autocorrelation function is within a ±𝑧𝛼 2⁄ √𝑛⁄  boundary.  

As anticipated, 𝑅(𝑗) can be easily computed through Excel, using built-in function CORRELA-

ZIONE(). That function takes two arguments, which are the two vectors of the data to be correlated. 

In this case, the two vectors are the initial vector and the same vector with an offset 𝑗.  

 

Example 

The following is an autocorrelation plot (correlogram) for a multiplicative LCG, using a sample of 

10k observations. For a 95% confidence, we get 𝑧0.025 = 1.96, and √𝑛 = 100. Therefore, the as-

sumption of IID-ness cannot be rejected with the above significance level if all sample autocorrela-

tion coefficients are within ±0.0196.  

This is false, hence we must take a closer look. In order to read correlograms, you should keep this 

in mind: 
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a) it is perfectly normal that a fraction 𝛼 of the points are outside the two bands (this is intrin-

sic in the fact that we are asking for (1 − 𝛼) confidence). So, if you see few values outside 

the band, keep your cool and check the next bullet. 

b) How large are these outliers? If their absolute value is close to the limit, then you should 

not worry too much. If they are abnormally high, then you should worry. So, the higher (in 

absolute value), the worse. 

c) Where are these outliers? If they are at large lags, then you should not worry. At large lags, 

𝑅(𝑗) is less reliable due to the fact that the sum by which it is computed has too few values, 

hence it is subject to higher oscillations: it may just be bad luck. If they are at small lags, 

then you should really worry. Note that, in order to keep this phenomenon into account, 

some analysts use confidence bands of increasing width, just to signify that higher correla-

tions at large lags should be tolerated.  

 

What should we do when the sample is not IID? 

A simple technique is subsampling. Construct a smaller sample, including every point of the pre-

vious sample at random with probability 𝒑. Try different values of 𝑝 (typically, 1 2𝑘⁄  for increas-

ing values of 𝑘), and repeat the analysis (lag plots, correlograms).  

Unless your data is very wild (long-range dependent), this method should work after a while (i.e., 

for a suitably large value of 𝑘).  

 

Of course, by doing this, you are reducing the width of your sample. If you start from 𝑛 points, 

you end up with 𝑛 2𝑘⁄  points on average. Therefore, it is important to stop as soon as your data 
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shows negligible autocorrelation. This way, you quickly find the real amount of information that 

your sample includes, and you can compute meaningful confidence intervals.  

Subsampling can be done automatically with Excel: you need to use item CAMPIONAMENTO 

from the additional component ANALISI DEI DATI. OO Calc has a similar feature.  
 

Exercise (to be done with Excel/Calc) 

Take a large sample of data (e.g., successive delay at some network system). Compute the mean and 

confidence interval assuming that they are IID, and acknowledge that the CI is small. Check the IID 

hypothesis using visual lag plot and autocorrelation function. 

Since data are not IID, then subsample them with 𝑝 = 1 2𝑘⁄  probability and check the IID-ness hy-

pothesis again. Stop when they are IID, and compute again the mean and CI. Check that it is con-

siderably larger than before.  

 



Notes on data analysis (student version) – Giovanni Stea – last saved 30/10/2022 17:48:00 

 

43 

 

3 Model Fitting 

This technique is also called regression. It consists in finding a parametric model that explains 

well the correspondence between a predictor variable and a predicted response. This, in turn, al-

lows one to make predictions on the future, which is the interesting aspect. 

Suppose we have 𝑛 observations {(𝑥𝑖, 𝑦𝑖), 1 ≤ 𝑖 ≤ 𝑛}, and we want to find a model that allows us 

to predict values of the RV 𝑌 from those of 𝑋.  

What is a good model? It is one that “fits the data well”, i.e., is in accordance with the data. 

 

This is useful, for instance, if you suspect that x is a likely cause for y, or if measuring y is too tricky 

or expensive, while measuring x is relatively easier.  

The shapes are all lines (hence the term “linear regression”). We will describe linear regression 

first, and then show that non-linear regression techniques are easy to derive.  

3.1 Linear regression 

For a linear model, we need to find two regression parameters, namely the offset and slope of the 

line that “best fits the data”. Fitting the data to the model consists in computing the “best” 𝑏0, 𝑏1 

such that �̂� = 𝑏0 + 𝑏1 ⋅ 𝑥. 𝑥 is the predictor variable, and �̂� is the predicted response. Of course, 

what values of 𝑏0, 𝑏1 are the best will depend on the data at my disposal  ̧ i.e., on the sample of 𝑛 

observations {(𝑥𝑖, 𝑦𝑖), 1 ≤ 𝑖 ≤ 𝑛}. 

The difference between the predicted response (i.e., value 𝑦�̂� = 𝑏0 + 𝑏1 ⋅ 𝑥𝑖) and the actual re-

sponse (i.e., measured value 𝑦𝑖 in paired observation (𝑥𝑖, 𝑦𝑖)) is called error or residual. 

𝑒𝑖 = 𝑦𝑖 − 𝑦�̂� = 𝑦𝑖 − 𝑏0 − 𝑏1 ⋅ 𝑥𝑖 
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In practice, the linear regression technique (called the least square method) consists in finding 

the line that:  

- minimizes the Sum of Squared Errors (SSE), i.e., ∑ 𝑒𝑖
2𝑛

𝑖=1 = ∑ (𝑦𝑖 − 𝑏0 − 𝑏1 ⋅ 𝑥𝑖)
2𝑛

𝑖=1  

- subject to the condition that the mean error is null, i.e., ∑ 𝑒𝑖
𝑛
𝑖=1 = ∑ (𝑦𝑖 − 𝑏0 − 𝑏1 ⋅ 𝑥𝑖)

𝑛
𝑖=1 = 0 

This can be done algebraically (check you notes on numerical analysis), and the result is as follows: 

𝑏1 =
∑ 𝑥𝑖𝑦𝑖−𝑛⋅�̅�⋅�̅�
𝑛
𝑖=1

∑ 𝑥𝑖
2−𝑛⋅(�̅�)2𝑛

𝑖=1

, 𝑏0 = �̅� − 𝑏1 ⋅ �̅�. 

The same procedure (i.e., finding a minimum of a constrained optimization problem) can be used to 

fit any other (non-linear, or multiple linear) model. The problem is always of the following form:  

min∑ (𝑦𝑖 − 𝑓(𝑥𝑖))
2𝑛

𝑖=1

𝑠. 𝑡.    ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))
𝑛

𝑖=1
= 0

 

Where 𝑓( ) can be any function. The only problem is that solving it may require heavy computa-

tions (non-linear optimization problems can be hard to solve), especially with large samples or 

functions of many parameters. 

Note that MS Excel can solve constrained optimization problems (through an add-on component 

called “solver” or “risolutore”). Moreover, it fits automatically several types of models, namely: 

- linear (the one we have just seen) 

- polynomial (up to a degree of six, which requires up to 7 parameters) 

- logarithmic 

- exponential 

- power relationship (�̂� = 𝑎 ⋅ 𝑥𝑏) 

This is done quite easily: 

- you do a scatterplot graph of the observations. 

- you add a regression line on the graph (“linea di tendenza”) and ask for its equation to be dis-

played.   

The above equation gives you the regression curve that minimizes the SSE, as well as the coeffi-

cient of determination, which we will see in a minute.  
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Example (to be done using Excel) 

Disk I/O 
time 

CPU 
time 

14 2 

16 5 

27 7 

42 9 

39 10 

50 13 

83 20 

 

The number of Disk I/Os and CPU times of seven runs of a program 

were measured, and the results in the table were obtained. We want to 

fit a model which allows one to predict the CPU time from the disk 

I/O time.  

The first thing to do is to draw a scatterplot, having disk time on the 𝑥 

axis and the CPU time on the 𝑦 axis. 

 

The scatterplot looks reasonably linear. Therefore, we can use the least square method and find the 

best linear prediction to be the following: 

 

We obtain 𝑏1 = 0.2438, 𝑏0 = −0.0083.  
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We can compute the residuals and the SSE:  

 Disk I/O CPU time residuals res. squared 

 14 2 -1.405 1.974 

 16 5 1.108 1.227 

 27 7 0.426 0.181 

 42 9 -1.231 1.516 

 39 10 0.500 0.250 

 50 13 0.818 0.670 

 83 20 -0.227 0.052 

         

sum 271 66 -0.012 5.869 

mean 38.714 9.429   

 

Note that the sum of the residuals is not null. This is due to numerical approximations (we would 

need more decimals for the regression coefficients). The SSE is 5.869, and is the minimum possi-

ble. Every other line will yield a higher one.  

 

 

The SSE is an interesting quantity, since it allows you to compute the part of the variation of the 

predicted response which is not explained by the model.  

The variation (not the variance: the variation) of the predicted response is called the Sum of 

Squares Total, defined as 𝑆𝑆𝑇 = ∑ (𝑦𝑖 − �̅�)
2𝑛

𝑖=1 .  

The quantity 𝑅2 =
𝑆𝑆𝑇−𝑆𝑆𝐸

𝑆𝑆𝑇
 is called the coefficient of determination, and it explains how much of 

𝑦’s variation can be predicted by the model we have used. It is the square of 𝑐𝑜𝑟𝑟(𝑋, 𝑌). Of course, 

this quantity is between 0 and 1, where 1 would indicate that there is no uncertainty in the 𝑦s once 

we have discovered their dependence from the predictor variable 𝑥.  

We can compute 𝑅2 manually, or just have Excel do the work for us.  

 Disk I/O CPU time residuals res. squared  variation 

 14 2 -1.405 1.974  55.18367 

 16 5 1.108 1.227  19.61224 

 27 7 0.426 0.181  5.897959 

 42 9 -1.231 1.516  0.183673 

 39 10 0.500 0.250  0.326531 

 50 13 0.818 0.670  12.7551 

 83 20 -0.227 0.052  111.7551 

            

sum 271 66 -0.012 5.869  205.7143 

mean 38.71429 9.428571     
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In the above example, we get 𝑅2 =
𝑆𝑆𝑇−𝑆𝑆𝐸

𝑆𝑆𝑇
=

205.714−5.869

205.714
= 0.9715. This means that more than 

97% of y’s variability is explained by the model, and the rest is due to factors that the model cannot 

explain (e.g., experimental errors).  

 

I am interested in showing you two aspects of model fitting which are interesting from a perfor-

mance evaluation standpoint, namely: 

- How to predict a value using a regression model, and how to associate a confidence to that 

prediction. 

- How to assess whether a regression model is good or not. In particular, how to verify if the un-

derlying assumptions are met. They may not be, and large errors may occur if they are not.  

 

First of all, we observe that the model parameters 𝑏0, 𝑏1 are random variables (since they are ob-

tained from a sample whose predicted variable is affected by random experimental errors), and they 

estimate the true model parameters 𝛽0, 𝛽1. We need to draw a confidence interval for the latter. 

The procedure to get to the result is complicated. We will just state the result, so that you can use it 

as a reference (you can also find it on textbooks). 

- For 𝛽0, the (1 − 𝛼) CI is 𝑏0 ∓ 𝑡𝛼 2⁄ ,𝑛−2 ⋅ √
𝑆𝑆𝐸

𝑛⋅(𝑛−2)
⋅

�̅�2

∑ 𝑥𝑖
2𝑛

𝑖=1 −𝑛⋅�̅�2
 

- For 𝛽1, the (1 − 𝛼) CI is 𝑏1 ∓ 𝑡𝛼 2⁄ ,𝑛−2 ⋅ √
𝑆𝑆𝐸 (𝑛−2)⁄

∑ 𝑥𝑖
2𝑛

𝑖=1 −𝑛⋅�̅�2
 

The uncertainty will depend, of course, on the SSE. The higher the fraction of variation that the 

model cannot explain, the larger the CI for its variables will be.  

Especially for the slope 𝛽1, you may want to check that your CI does not include zero, otherwise 

you may not even be sure that there is any dependence at all between the predicted response and the 

predictor variable. If it includes zero, the dependence may be a coincidence, due to a lucky sample. 

We have said that the purpose of regression is to allow one to predict the value of the predicted re-

sponse for a given value of the predictor variable. Obviously, any prediction has uncertainty, and 

uncertainty has to be quantified.  

The uncertainty will depend, of course, on the SSE. The (1 − 𝛼)-prediction interval for a future 

observation of the predicted variable at value 𝑥𝑝 of the predictor variable is the following: 

�̂�𝑝 ∓ 𝑡𝛼 2⁄ ,𝑛−2 ⋅ √
𝑆𝑆𝐸

𝑛 − 2
⋅ [1 +

1

𝑛
+

(𝑥𝑝 − �̅�)
2

∑ 𝑥𝑖2
𝑛
𝑖=1 − 𝑛 ⋅ �̅�2

] 
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Where 𝑦�̂� = 𝑏0 + 𝑏1 ⋅ 𝑥𝑝. Note that the prediction interval depends on the value of the predictor 

variable, and it is minimal when 𝑥𝑝 = �̅�. In fact, the further you move away from the “center” of 

the interval, the less information you have regarding the prediction. If you go far outside the interval 

where you have sampled the predictor variable, then you have a large uncertainty (always assuming 

that your model is still valid outside that range, which may not well be). 

3.1.1 Testing the assumptions 

The problem with formal methods – always – is that people stop using their brain when they can 

follow one, and tend to trust the results blindly. If they know something about the phenomenon 

they are modelling, they act like they don’t. This should be avoided, of course. Recall that perfor-

mance evaluation is an art. 

The first assumption to be tested is if the relationship between the two variables indeed looks line-

ar. This can be tested visually by drawing a scatterplot of both quantities.  

Note that you should avoid making rash assumptions regarding the relationship between your var-

iables outside your measurement interval. Most phenomena exhibit threshold behaviour (be-

cause systems tend to reach saturation, and physical quantities are often positive), hence this should 

be taken into account – especially when making predictions. 

For instance, the linear regression in the figure below yields the coefficients reported directly in the 

graph. From these, we might conclude that the best prediction when 𝑥𝑝 = 1 is 𝑦�̂� = −2.2. If those 

two quantities must be positive (e.g., they are completion times for two different activities), it is 

clear that we are misunderstanding the model. The model looks linear in the interval that we are 

observing, but is in fact multilinear (i.e, the predicted variable saturates to zero).  
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For the same reason, you might be interested to know what happens when 𝑥𝑝 = 120, and the model 

states that 𝑦�̂� = 26.81, Still assuming that you are measuring a response time, you may know for a 

fact (e.g., since this is a design constraint) that my system drops requests after 20 seconds of com-

putations, hence no response time larger than 20 can be observed. Again, this is an indication of 

multilinearity, and you should be careful to make inferences where none is due.  

If a system has a strong multilinear tendency, which appears in the observations, then it may be 

wise to model-fit its linear parts separately. 

 

Note that there are other cases when a model may look linear when in fact it is not. For instance, 

the half of a parabola that lies left/right of its vertex can sometimes be approximated through a line, 

if the range is not too large. If you only look at more points to the left and right, you see that the 

model is nonlinear. 

 

 

There are some hidden assumptions, which are particularly tricky and must be validated. When fit-

ting a model �̂� = 𝑓(𝑥) using least-square minimization, we are assuming that: 

y = 0.1097x + 9.7632

R2 = 0.9966
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residuals are IID Normal variables with a null mean and a constant standard deviation. 

 

The fact that residuals have a null mean is obvious, and it is guaranteed by the fact that we use 

least-square minimization (where null residual mean is in fact a constraint of the optimization prob-

lem). The fact that they are IID, Normal, and with a constant standard deviation is not obvious at all, 

and it may well be false. If it is, then our model is weak, meaning that we cannot be confident that 

it explains the data well, even when the 𝑹𝟐 coefficient is close to 1. 

 

The fact that residuals are normally distributed can be easily tested with a Normal QQ plot, as al-

ready seen many times. The normality assumption is only required for confidence and prediction 

intervals (in fact, you can use Student’s T if and only if variables are Normal). If residuals are not 

Normal, then confidence and prediction intervals will not be what you think they are, but least-

square minimization will still give you the best unbiased estimate of the regression coefficients. 

 

The other two assumptions can be tested using simple visual techniques: 

- a scatterplot of the residuals vs. the predicted response to test constant std (homoskedasticity) 

- a scatterplot of the residuals vs. the observation number, to test IIDness. 

 

The two scatterplots must show no visible trend of the residuals.  

If residuals are ascending/descending with the observation number, there may be a bias (e.g., some 

incorrect initialization) that shows that experiments are not independent (e.g., you forgot to reset 

some meter when measuring the output). 

If the absolute value of the residuals shows (e.g.) an increasing trend with the predicted variable, 

then it is unlikely that residuals have constant standard deviation.  

 

The assumption of constant standard deviation is important: in least-square minimization we 

weight every point the same. It is like solving:  

min∑ 𝑤𝑖 ⋅ (𝑦𝑖 − 𝑓(𝑥𝑖))
2𝑛

𝑖=1

𝑠. 𝑡.    ∑ 𝑤𝑖 ⋅ (𝑦𝑖 − 𝑓(𝑥𝑖))
𝑛

𝑖=1
= 0

 

With 𝑤𝑖 = 1 ∀𝑖. This means that we are assuming that all the points carry the same amount of in-

formation. However, if some variables (e.g., at higher values of the predictor) have a higher vari-
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ance, then they contain more information than others, hence they should be weighted more than 

the others.  

Something similar happens when residuals are correlated. In both cases, the net result is a loss of 

precision in the model (hence, in the estimates). If needed, weighted least-square can be used to 

get rid of both problems. This is, however, outside the scope of this course.  

 

Exercise (to be done using Excel) 

Test the assumptions for the previous example 

Solution 

1) The model looks linear – we have already ascertained that.  

2) As far as normality is concerned, we draw a QQ plot as follows: 

 

id quantile 

Normal 

Q 

O.S. of 

residuals 

1 0.071 -1.466 -1.405 

2 0.214 -0.789 -1.231 

3 0.357 -0.365 -0.227 

4 0.500 0.000 0.426 

5 0.643 0.365 0.500 

6 0.786 0.789 0.818 

7 0.929 1.466 1.108 

 

The QQ plot looks approximately linear, so we are ok with normality. 

3) let us check whether the std is constant and variables are IID. 

The left plot shows the residuals vs. the experiment number, and it yields no visible trend. The right 

plot shows the residuals vs. the predicted response, and shows no trend as well. Moreover, the order 

of magnitude of the residual is small w.r.t. the one of the predicted response.  
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We conclude that our analysis verifies the hypotheses, hence the model is valid. It is also a good 

model, since it explains most of the variability.  

 

 

Exercise (to be done with Excel) 

Apply linear regression to the set of data below, taken from measurements of a remote procedure 

call time on a system. Check if the model is correct. 

Bytes 
(predictor) 
 

Time 
(predicted 
variable) 

92 32.8 

92 34.2 

92 32.4 

92 34.4 

348 41.4 

604 51.2 

860 76 

1074 80.8 

1074 79.8 

1088 58.6 

1088 57.6 

1088 59.8 

1088 57.4 

Solution 

The first test is the visual one, for linearity: 
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It appears that the data can be approximated through a linear model.  

I would observe that there is something slightly suspicious at the right end of the graph. Several 

courses of action are possible, such as: 

- use a multilinear model. Stop the first linear model at 1074, and start with the other using the last 

couple of values of the predictor variable. Unfortunately, this does not seem much of an alternative, 

since a sequence of two values is way too small to make any inference 

- discard the last four measurements (i.e., those related to the highest value of the predictor), 

flagging them as outliers, and be content with the first linear model, explaining data up to 1074 

bytes. This is not too advisable either, unless you have good cause to do so. 

- measure around the suspicious values: get measures for values of the predictor variable imme-

diately to the right and left of 1088, so that you gain more information. There may be some bug ac-

cording to which 1088 creates an unusual behaviour, and everything goes back to normal after that. 

Otherwise, it may be that at 1074 the system start exhibiting a different behaviour (e.g., a decreas-

ing line, i.e., it starts being multilinear or non-linear in general), and you might want to know that. 

 

We choose none of these alternatives, and use linear regression for the whole set of data.  

We let Excel do the work, and obtain:  �̂� = 0.0337 ⋅ 𝑥 + 31.068, with 𝑅2 = 0.7482, which is not 

that much. It means that our model cannot explain 25% of the variation of the response.  
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id Bytes Time pred. Resp. residuals  SST comp. 

1 92 32.8 34.17 1.37  -20.77 

2 92 34.2 34.17 -0.03  -19.37 

3 92 32.4 34.17 1.77  -21.17 

4 92 34.4 34.17 -0.23  -19.17 

5 348 41.4 42.80 1.40  -12.17 

6 604 51.2 51.42 0.22  -2.37 

7 860 76 60.05 -15.95  22.43 

8 1074 80.8 67.26 -13.54  27.23 

9 1074 79.8 67.26 -12.54  26.23 

10 1088 58.6 67.73 9.13  5.03 

11 1088 57.6 67.73 10.13  4.03 

12 1088 59.8 67.73 7.93  6.23 

13 1088 57.4 67.73 10.33  3.83 

       

sum 8680 696.4 696.4 0  -2.13E-14 

sumSq 8301304 41109.20 40151.35 957.78  3803.59 

mean 667.69 53.57 53.57 0  -1.64E-15 

       

R2 0.748      

 

Now we test the assumptions. First of all, the QQ plot does not seem to be linear at all.  

 

 

Moreover, the residuals seem to grow 

in magnitude with the number of exper-

iment (which is bad), and with the 

magnitude of the predicted variable 

(which is worse). They do not seem to 

have constant standard deviation.  

 

  

-20

-15

-10

-5

0

5

10

15

-2 -2 -1 -1 0 1 1 2 2

-20.00

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

0 2 4 6 8 10 12 14

-20.00

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

30 35 40 45 50 55 60 65 70

observation id Predicted response 



The result is that this is a weak model. It is false that it explains 75% of the variation of the predict-

ed response, since the hypotheses are not met. Predictions made with such a model are likely to 

have much smaller confidence than they should. In other words, confidence intervals will appear 

smaller than they really are.  

 

The fact that a linear model is not a good one should not be attributed to the fact that the model may 

look multilinear (i.e., because of the right edge of the graph being unaligned with the rest). If we re-

strict to the interval [92,1074], then you can check that 𝑅2 = 0.97, but: 

- the normality assumption is still not verified (tails are heavier than a Normal) 

- the assumption of constant std is not verified either (you can check that the above graph keeps 

showing an increasing trend with the predicted response even if you remove the four points at 

the top-right). 

 

 

Models can also be non-linear (e.g., exponential, etc.). For an exponential model, we need to com-

pute 𝑎, 𝛼 such that �̂� = 𝑎 ⋅ 𝑒𝛼⋅𝑥. The regression parameters are 𝑎, 𝛼, and they are computed based 

on our 𝑛 observations.  

Non linear regression is not different in the hypotheses. The same procedure used to verify linear 

regression should also be applied to non-linear regression as well, the only difference being the 

visual test to determine the shape of the regression model.  

 

We can also use transformations. What kind of transformations can you use, and when and why 

should you use them? 

- when: there are basically two reasons. The first is to simplify the analysis: when you have a 

complex relationship, it pays to simplify it. There are a lot of transformations that yield a linear 

model, which is easier to interpret and justify. The other reason is to make up when the as-

sumptions are not met. For instance, residuals may not be Normal, the other assumptions may 

not be met, the ratio 𝑦max 𝑦min⁄  may be too large for a linear model. A transformation involv-

ing the predicted variable changes the distribution of the residuals. If it wasn’t Normal be-

fore, it may be Normal after the transformation. 

- What transformations can you use? Those that yield a linear model, because the latter is easy 

to analyze. For instance: 
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Model Transformation New Model 

𝑦 = 𝑎 +
𝑏

𝑥
 𝑥′ = 1 𝑥⁄  𝑦 = 𝑎 + 𝑏 ⋅ 𝑥′ 

𝑦 =
1

𝑎 + 𝑏 ∙ 𝑥
 𝑦′= 1 𝑦⁄  𝑦′ = 𝑎 + 𝑏 ⋅ 𝑥 

𝑦 = 𝑎 ⋅ 𝑏𝑥 𝑦′ = log𝑦 𝑦′ = log𝑎 + (log𝑏) ⋅ 𝑥 

𝑦 = 𝑎 + 𝑏 ⋅ 𝑥𝑛 𝑥′ = 𝑥𝑛 𝑦 = 𝑎 + 𝑏 ⋅ 𝑥′ 

𝑦 = 𝑎 ⋅ 𝑥𝑏 𝑦′ = log𝑦,    𝑥′ = log𝑥  𝑦′ = log𝑎 + 𝑏 ⋅ 𝑥′ 

3.2 Overfitting 

Overfitting occurs when you try to find a model that fits exactly your data, without using knowledge 

of your system. Take once more the example of disk vs. CPU time, which we have fitted to a linear 

model with good results:  

 

 

Disk I/O 
CPU 
time 

14 2 

16 5 

27 7 

42 9 

39 10 

50 13 

83 20 

  

If you want to obtain a perfect fit for your set of 7 paired observations, why not using a high-

degree polynomial model? The result is the following: 

 

y = 0,2438x - 0,0083
R² = 0,9715
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The fit is perfect, since 𝑅2 = 1. However, this is plainly stupid. First of all, there is no reason 

whatsoever why the relationship between the predictor and the predicted variable should be poly-

nomial. There is absolutely no reason to envisage a peak in the predicted response around 𝑥 = 75. 

Second, for each (nondegenere) set of 𝑛  points there exists a degree-n polynomial that passes 

through all the points, so it’s a foregone conclusion in any case. Third, we are underestimating the 

fact that there are errors in the measurements. Let us see what happens if the measurements are 

only slightly different, e.g. by adding some error to point (42,9), which becomes (42,11).  

 

Disk I/O 
CPU 
time 

14 2 

16 5 

27 7 

42 11 

39 10 

50 13 

83 20 

 

 

Our linear model stays pretty much the same. The slope changes just a bit. What about the polyno-

mial one? 

 

It is clear that the model is entirely different (look at the scale of the 𝑦 axis). Try predicting the 

value of the predicted response when 𝑥 = 60 in the two cases, and you will get wildly different es-

timates (75 vs. 18). Not so with the linear model, where the prediction differs by few percentage 

points.  

y = 0,2457x + 0,2018
R² = 0,9789
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This is a clear case of overfitting. Overfitting occurs when a model can only explain the very data 

it has been built on, and nothing else. While the linear model has good predictive capabilities, the 

polynomial one hasn’t any: it describes random error or noise instead of the underlying rela-

tionship. Overfitting occurs when a model is excessively complex, e.g. includes too many parame-

ters relative to the number of observations. As such, it overreacts to minor variations. 

Always go for the simplest model, and and give precedence to the insight on your problem.   
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4 Design of experiments 

Quite often, you have to analyze one or more systems whose performance depends on several fac-

tors. The impact of the factors is not known in advance – more to the point, it is exactly what you 

need to assess.  

For instance, assume that you want to evaluate the performance of a web server, given a workload 

(i.e., a trace of transactions, or an artificially generated input process), as a function of: 

- the type of CPU (two alternatives) 

- the amount of RAM (interval) 

- the cache size (interval) 

- the number of disks (interval) 

- the software architecture (two alternatives: Apache TomCat and OpenLiteSpeed) 

The above are called factors. The first and last one are binary, the others are discrete (multilevel). 

You may need to answer the following questions:  

1) which factors are the most relevant to my metric of interest (say, throughput or response 

time)?  

2) How can you tune these factors to maximize the performance? 

 

In order to analyze your system, you have essentially three alternatives.  

 

Simple factor analysis  

This is what most people end up doing. You choose an arbitrary configuration, i.e. a point in your 

factor space (e.g., CPU x, 16GB RAM, 1GB cache, 2 disks, TomCat server), and vary one factor at 

a time. For instance, you vary the RAM in its interval first, then you vary the cache, etc. 

How many experiments will you need to carry out if you work like this? 1 + ∑ (𝑛𝑖 − 1)
𝑘
𝑖=1 , if 𝑘 is 

the number of factors, and factor 𝑖 has 𝑛𝑖 levels. If you need to repeat each experiment 𝑟 times in 

independent conditions, then your total is 𝑟 ⋅ [1 + ∑ (𝑛𝑖 − 1)
𝑘
𝑖=1 ]. The number of experiments grows 

linearly with the number of factors.  

Why should you repeat experiments 𝑟 times? Repeating experiments in independent conditions is 

the key to generating IID samples, on which to compute sample statistics. This is very important 

when doing simulations, and there is a recipe to do so. If you are doing measurement, repeating 

measurements helps you to assess the impact of experimental errors. Measurements are independ-

ent if the output of one measure does not influence the others.  
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Of course, the downside of this approach is that you are never going to explore all the space of the 

factors, and you are neglecting the possibility that two (or more) factors may interact, which lim-

it’s the usefulness of this technique for tuning your system to maximum performance.  

 

Simple example: two factors. You are 

only exploring along the two straight 

lines. Therefore, you will never know if 

there are other combinations of levels 

which yield considerably better perfor-

mance. It may well be that “small cache, 

large memory” is the best combination, 

but you will never know. 

RAM

C
a

c
h
e ......... . ..

..
..

.
.

..
. .

a1 a2

b1

b2

n1

n2

 

In the end, this type of analysis is quick, but it gives you a very unreliable picture of what happens 

in practice, from which you are tempted to draw unwarranted conclusions. For instance, if the per-

formance along the vertical line does not change much, you may end up thinking that the cache size 

is not significant. Maybe it is not significant when the RAM size is the one you experimented 

with, and it becomes significant to the far left (or right). 

 

Full factorial analysis  

If you want full knowledge of the factor space, an obvious solution is to explore all the factor 

space. With the above notation, the number of required experiments would be ∏ 𝑛𝑖
𝑘
𝑖=1 , or 𝑟 ⋅

∏ 𝑛𝑖
𝑘
𝑖=1  if you need replicas. It is clear that the number of experiments you need to perform gets 

quickly out of control, even with relatively few factors.  

In the initial example, assuming that factors RAM and cache have 10 levels and factor “no. disks” 

has five, you end up with 2 × 10 × 10 × 5 × 2 = 2000, or 2000 ⋅ 𝑟. If each experiment takes one 

hour (this is quite likely, with both simulation and measurement), you end up requiring more than 

one year to have all the results in with five replicas. And jolly good luck to you with storing the re-

sults so that you can remember which output came from which combination of factor levels one 

year later.  

Another downside is that, if at some point you understand that you need another factor in your 

analysis (e.g., the NIC speed), then you have to undergo a lot more experiments. This is typical: 

very often, you start up an analysis thinking that you already know which factors you will need to 
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consider, and it is only later that you discover you need more. Using this technique, it is likely that 

you will stop when you are fed up with doing experiments (or time and money for the project run 

out), rather than when you get the insight you require.  

 

There is, of course, a clear advantage to this technique: the fact that you can assess the interplay 

of two or more factors. For instance, it may be that the benefits of having a larger RAM are more 

evident if the cache is large, or if the number of disks is large. You could never discover this with a 

single-factor analysis, but you surely will in a full-factorial analysis. 
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Cache=b1

Cache=b2

Cache=b1

Cache=b2

 

In the above graphs, we see that the metric of interest increases with both RAM and cache. Howev-

er, in the left graph, the two factors seem to be independent. In fact, the increase in throughput 

when the RAM size changes from 𝑎1 to 𝑎2 is the same at the two cache levels. Instead, on the right, 

you can see that the metric still increases with both factors, but factors do interact: more specifical-

ly, the improvement due to increasing the RAM depends on the cache size. With a large cache, the 

performance improvement due to increasing the RAM is smaller. Knowing how factors interact is 

particularly important to know if you want to tune your system for maximum performance.  

 

2kr factorial analysis  

This is a third technique, which allows you to reap most of the benefits of the former, at a moder-

ate implementation cost.  

It consists in exploring only the combinations of extremes of the factor levels. This technique al-

lows you to assess the relative importance of factors on your metric, so that you can decide which 

to investigate. It also yields information about the interplay between factors.  

It requires you to analyze “only” 2𝑘 configurations (or 2𝑘 ⋅ 𝑟, if you need replicas), hence its name. 

Continuing the above example, you would need 32 experiments (or 160, with 5 replicas), instead of, 
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respectively, 2000 or 10000. This would take less than a week, and leave you with a manageable 

number of output results to store and analyze. 

 

Of course, this technique does not scale well with the number of factors. It scales better than the 

former, but does not allow you to analyze a system with, say, 20 factors. However, it is quite un-

likely that you will encounter that many. If you do, there are techniques that allow you to reduce 

the number of experiments to the minimum necessary to get meaningful results (they are called 

2𝑘−𝑝 ⋅ 𝑟, meaning that you discount 𝑝 out of 𝑘 factors). We will not go that deep. 

Factorial analysis borrows heavily from model fitting, hence we will reuse much of the notation 

and concepts from the previous lectures. 

Before delving deep into how it works, it is useful to remind ourselves that the above are techniques 

to design experiments. They work with any kind of experiment: from simulation experiments to 

measurement ones, and they can be used seamlessly in one case or the other. 

4.1 𝟐𝒌 factorial analysis 

The basics of factorial analysis are easier to understand if errors and replication are kept out of the 

way. For now, we will assume that we have one measurement per configuration, which is error-free. 

We will add back errors later on.  

Take the following example. We measure the performance of a workstation in Million Instructions 

per Second (MIPS), with two configurations of cache and RAM, and obtain the following: 

 Memory size (Gb) 

Cache size (Mb) 4 16 

1 15 45 

2 25 75 

 

We want to assess what the impact of the two factors (namely, RAM and cache), on the perfor-

mance. Call A the RAM and B the cache for ease of notation. 

We define two variables 𝑥𝐴, 𝑥𝐵 as follows 

𝑥𝐴 = {
−1 𝑚𝑒𝑚 = 4
+1 𝑚𝑒𝑚 = 16

, 𝑥𝐵 = {
−1 𝑐𝑎𝑐ℎ𝑒 = 1
+1 𝑐𝑎𝑐ℎ𝑒 = 2

 

We can then fit the output variable to a nonlinear regression model having 𝑥𝐴, 𝑥𝐵 as predictor var-

iables as follows: 

𝑦 = 𝑞0 + 𝑞𝐴 ⋅ 𝑥𝐴 + 𝑞𝐵 ⋅ 𝑥𝐵 + 𝑞𝐴𝐵 ⋅ 𝑥𝐴 ⋅ 𝑥𝐵 

Where 𝑞𝑖 are some coefficients to be determined. The model is non linear because it includes a 

product of predictor variables 𝑥𝐴 ⋅ 𝑥𝐵. 

These are the two 

extremes of the in-

terval 
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We have four observations, corresponding to four combinations of values for the two variables, i.e.  

15 = 𝑞0 − 𝑞𝐴 − 𝑞𝐵 + 𝑞𝐴𝐵
45 = 𝑞0 + 𝑞𝐴 − 𝑞𝐵 − 𝑞𝐴𝐵
25 = 𝑞0 − 𝑞𝐴 + 𝑞𝐵 − 𝑞𝐴𝐵
75 = 𝑞0 + 𝑞𝐴 + 𝑞𝐵 + 𝑞𝐴𝐵

 

This is a 4x4 linear system, whose unknowns are the 𝑞𝑖, and – since the known term is non null, it 

has only one solution. You can solve it using Excel, if needed (but you won’t need it). You solve 

the system and find the following: 

𝑦 = 40 + 20 ⋅ 𝑥𝐴 + 10 ⋅ 𝑥𝐵 + 5 ⋅ 𝑥𝐴 ⋅ 𝑥𝐵 

The interpretation of the result is that:  

- 40MIPS is the mean performance among all 

observations 

- Factor A (the RAM) accounts for +20 MIPS 

in the model 

- Factor B accounts for +10 MIPS in the model 

- The interaction between A and B accounts for 

5 MIPS.  

RAM

th
ro

u
g

h
p

u
t

4 16

Cache=1

Cache=2

 

The performance increases with both factors, and it increases more when the other is high. 

In the general case, if you have 2 factors, you need 4 experiments (2 factors times 2 levels), and you 

get the following results:  

Experiment A B y 

1 -1 -1 𝑦1 

2 +1 -1 𝑦2 

3 -1 +1 𝑦3 

4 +1 +1 𝑦4 

Where 𝑦1 is the value corresponding to the observation when both factors are at low level, etc. 

You can write down four equations, i.e.,  

𝑦1 = 𝑞0 − 𝑞𝐴 − 𝑞𝐵 + 𝑞𝐴𝐵
𝑦2 = 𝑞0 + 𝑞𝐴 − 𝑞𝐵 − 𝑞𝐴𝐵
𝑦3 = 𝑞0 − 𝑞𝐴 + 𝑞𝐵 − 𝑞𝐴𝐵
𝑦4 = 𝑞0 + 𝑞𝐴 + 𝑞𝐵 + 𝑞𝐴𝐵

 

And observe that: 

- if you sum all four, you get 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 = 4𝑞0 

- if you sum them with alternate signs (-, +, -, +) you get −𝑦1 + 𝑦2 − 𝑦3 + 𝑦4 = 4𝑞𝐴 

- if you sum them with alternate signs (-, -, +, +) you get −𝑦1 − 𝑦2 + 𝑦3 + 𝑦4 = 4𝑞𝐵 

- again, if you sum them with alternate signs (+ - - +), you get +𝑦1 − 𝑦2 − 𝑦3 + 𝑦4 = 4𝑞𝐴𝐵 
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Therefore, in the end, you don’t have to use matrix algebra to solve that linear system: you just 

need to look at the signs and do some easy sums.  

 

It helps a lot if numbers are organized in a table, where signs are substituted by +1 or -1 and col-

umn totals are obtained by multiplying the corresponding observation for the specified sign, and 

summing up. The procedure is as follows: 

1) you write down a column of your 𝑦 values 

2) for each measurement, you record the level of the factors which produced that value, in the 

form of a −1 (lo) or +1 (hi), in columns A and B 

3) You add a column of +1 (I) for the mean response (left), and a column AB for the factors 

interplay (whose value is the product of the signs of the factors). 

4) You get the algebraic sums of the 𝑦s times the signs at the end of each column, and you di-

vide these by the number of observations (i.e., 4, in this example). 

I A B AB Y 

1 -1 -1 1 15 

1 1 -1 -1 45 

1 -1 1 -1 25 

1 1 1 1 75 

160 80 40 20 Algebraic sum of the ys  

40 20 10 5 qi=total/4 

 

Now, the important thing about factorial analysis is that it allows you to determine the relative im-

portance of the factors. This is done through a procedure called analysis of variation. Mind the 

word “variation”, which is not the same as “variance”.  

This is done as follows. first, we compute the sum of squares total (SST) of the observed response, 

i.e. 𝑆𝑆𝑇 = ∑ (𝑦𝑖 − �̅�)
24

𝑖=1 . This is the total variation of the response variable. 

Then, we acknowledge that: 

𝑆𝑆𝑇 = 22 ⋅ 𝑞𝐴
2 + 22 ⋅ 𝑞𝐵

2 + 22 ⋅ 𝑞𝐴𝐵
2

= 𝑆𝑆𝐴      +     𝑆𝑆𝐵    + 𝑆𝑆𝐴𝐵
 

The above equality will be proved later on. Each of the three terms is the sum squares due to A (B, 

AB), and is equal to the term written in the previous line.  

Now, the fraction of variation explained by factor 𝑥, 𝑥 = 𝐴, 𝐵, 𝐴𝐵 is: 

𝑓𝑥 =
𝑆𝑆𝑥

𝑆𝑆𝑇
 

In our example, we have �̅� = 40,  
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𝑆𝑆𝑇 = (15 − 40)2 + (45 − 40)2 + (25 − 40)2 + (75 − 40)2

= 252 + 52 + 152 + 352

= 2100

 

And the percentage of variation is computed at the bottom of the table. 

I A B AB y (yi-y_)^2 

1 -1 -1 1 15 625 

1 1 -1 -1 45 25 

1 -1 1 -1 25 225 

1 1 1 1 75 1225 

160 80 40 20 total 2100 

40 20 10 5 qi=total/4  

4*qi^2 1600 400 100   
Fract. of 
variation 0.762 0.190 0.048   

 

In practice, you never compute the SST using the sum square total, but it is a lot easier to compute 

the SSx for each factor and then sum them up to get the SST. 

The above results say that 76.2% of the variation is due to memory, 19% to the cache size, and 

4.8% to the interaction of both. 

If you want to improve your system, increasing memory will yield the highest performance return. 

 

Now, for the proof of the above equality:  

𝑆𝑆𝑇 = 22 ⋅ 𝑞𝐴
2 + 22 ⋅ 𝑞𝐵

2 + 22 ⋅ 𝑞𝐴𝐵
2

= 𝑆𝑆𝐴      +     𝑆𝑆𝐵    + 𝑆𝑆𝐴𝐵
 

We start with the definition. Call 𝑥𝐴𝑖 the value of A for observation 𝑖 (i.e., +1 or -1). 

𝑆𝑆𝑇 =∑ (𝑦𝑖 − �̅�)
2

4

𝑖=1

=∑ [(𝑞0 + 𝑞𝐴 ⋅ 𝑥𝐴𝑖 + 𝑞𝐵 ⋅ 𝑥𝐵𝑖 + 𝑞𝐴𝐵 ⋅ 𝑥𝐴𝑖 ⋅ 𝑥𝐵𝑖) − 𝑞0]
2

4

𝑖=1

=∑ [𝑞𝐴
2 ⋅ 𝑥𝐴𝑖

2 + 𝑞𝐵
2 ⋅ 𝑥𝐵𝑖

2 + 𝑞𝐴𝐵
2 ⋅ (𝑥𝐴𝑖 ⋅ 𝑥𝐵𝑖)

2 + 𝐶𝑃𝑇]
4

𝑖=1

= 𝑞𝐴
2 ⋅∑ 𝑥𝐴𝑖

2
4

𝑖=1
+ 𝑞𝐵

2 ⋅∑ 𝑥𝐵𝑖
2

4

𝑖=1
+ 𝑞𝐴𝐵

2 ⋅∑ (𝑥𝐴𝑖 ⋅ 𝑥𝐵𝑖)
2

4

𝑖=1
+∑ 𝐶𝑃𝑇

4

𝑖=1

= 4𝑞𝐴
2 + 4𝑞𝐴

2 + 4𝑞𝐴𝐵
2 +∑ 𝐶𝑃𝑇

4

𝑖=1

 

Where CPT are the cross-product terms, which we now show to be identically null. These are, in 

fact: 

2 ⋅ 𝑞𝐴 ⋅ 𝑞𝐵 (∑ 𝑥𝐴𝑖 ⋅ 𝑥𝐵𝑖
4

𝑖=1
) + 2 ⋅ 𝑞𝐴 ⋅ 𝑞𝐴𝐵 (∑ 𝑥𝐴𝑖 ⋅ 𝑥𝐴𝑖 ⋅ 𝑥𝐵𝑖

4

𝑖=1
) + 2 ⋅ 𝑞𝐵 ⋅ 𝑞𝐴𝐵 (∑ 𝑥𝐵𝑖 ⋅ 𝑥𝐴𝑖 ⋅ 𝑥𝐵𝑖

4

𝑖=1
)

= 2 ⋅ 𝑞𝐴 ⋅ 𝑞𝐵 (∑ 𝑥𝐴𝑖 ⋅ 𝑥𝐵𝑖
4

𝑖=1
) + 2 ⋅ 𝑞𝐴 ⋅ 𝑞𝐴𝐵∑ 𝑥𝐵𝑖

4

𝑖=1
+ 2 ⋅ 𝑞𝐵 ⋅ 𝑞𝐴𝐵∑ 𝑥𝐴𝑖

4

𝑖=1
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The last two sums are obviously null, and so is the first one, which includes the inner product of 

the columns A and B of the sign table. The two columns are orthogonal by definition. 

This proves the equality. 

We now generalize the result to any number of factors. For instance, take an experiment with three 

factors. You just need to build a larger sign table, and everything else stays the same. In the sign 

table, all the combinations of the signs for the single factors A, B, C must be present  (much like at 

the left-hand side of a truth table), and the signs for the combinations are computed accordingly. 

 I A B C AB AC BC ABC y 

 1 -1 -1 -1 1 1 1 -1   

 1 1 -1 -1 -1 -1 1 1   

 1 -1 1 -1 -1 1 -1 1   

 1 1 1 -1 1 -1 -1 -1   

 1 -1 -1 1 1 -1 -1 1   

 1 1 -1 1 -1 1 -1 -1   

 1 -1 1 1 -1 -1 1 -1   

 1 1 1 1 1 1 1 1   

sum                  

mean (qi)                  

8*qi^2                  

frac. variation                  

 

 

Exercise 

We measure the MIPS of a system in several 

configurations, having  

- 1 or 2 processors 

- 4 or 16 Mb RAM 

- 1 or 2 kB cache 

The results are as follows: 

 4Mb mem 16Mb mem 

Cache size (kb) 1P 2P 1P 2P 

1 14 46 22 58 

2 10 50 34 86 

Solution 

We just need to decide the factors: A is memory, B is cache, C is number of processors. Then we 

put the numbers into the above table and make some straightforward computations. Using Excel, 

the whole process takes one minute. 

  I A B C AB AC BC ABC y 

 1 -1 -1 -1 1 1 1 -1 14 

 1 1 -1 -1 -1 -1 1 1 22 

 1 -1 1 -1 -1 1 -1 1 10 

 1 1 1 -1 1 -1 -1 -1 34 

 1 -1 -1 1 1 -1 -1 1 46 

 1 1 -1 1 -1 1 -1 -1 58 

 1 -1 1 1 -1 -1 1 -1 50 

 1 1 1 1 1 1 1 1 86 
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sum 320 80 40 160 40 16 24 8   

mean 
(qi) 40 10 5 20 5 2 3 1   

8*qi^2  
800 200 3200 200 32 72 8 4512 

variation  18% 4% 71% 4% 1% 2% 0%   

 

The result is that the most important factor is C, the number of processors, which accounts for 71% 

of the variation. Then you have memory, and cache comes third. The interactions are almost negli-

gible. This means that, if you want to study this system, you can just fix the cache to some value 

and vary the memory and the number of processors. 

4.2 𝟐𝒌 ∙ 𝒓 factorial analysis 

The limitation of the above design is that it does not account for experimental errors. These can 

only be assessed if independent replications are performed. If we repeat the experiment r times, 

then we have r values for each design alternative. In this case the model is slightly different, i.e. (as-

suming two factors for simplicity): 

𝑦 = 𝑞0 + 𝑞𝐴 ⋅ 𝑥𝐴 + 𝑞𝐵 ⋅ 𝑥𝐵 + 𝑞𝐴𝐵 ⋅ 𝑥𝐴 ⋅ 𝑥𝐵 + 𝑒 

In this case, we proceed as before to estimate the 𝑞 coefficients, using the sample mean over the 𝑟 

replications as a value for the response. 

 

Assume 𝑟 = 3, i.e. we repeat each experiment three times, hence we get three results.  

1) We compute the row sample mean to get the mean value for each experiment 

2) We repeat the same type of analysis using the sample mean as a result, and we compute the 

values for the 𝑞𝑖 coefficients. 

 

 I A B AB 

 
 
 

y(1) y(2) y(3) 

Row 
sample 
mean  

ym 

 1 -1 -1 1 15 18 12 15 

 1 1 -1 -1 45 48 51 48 

 1 -1 1 -1 25 28 19 24 

 1 1 1 1 75 75 81 77 

Sum 164 86 38 20         

mean (qi) 41 21.5 9.5 5         

   

3) Once the effects have been computed, we can estimate the experimental errors and the 

sum of squared errors (SSE) and add them to the table:  

     observations  errors  
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 I A B AB y(1) y(2) y(3) 

Row 
s.m. 
ym y(1)-ym y(2)-ym y(3)-ym  

 1 -1 -1 1 15 18 12 15 0 3 -3  

 1 1 -1 -1 45 48 51 48 -3 0 3  

 1 -1 1 -1 25 28 19 24 1 4 -5  

 1 1 1 1 75 75 81 77 -2 -2 4  

Sum 164 86 38 20         -4 5 -1 sum 

mean (qi) 41 21.5 9.5 5         -1 1.25 -0.25 mean 

Ssq         14 29 59 Ssq 

 

The SSE is 102 (=14+29+59), computed as the sum of the squares of all the elements in the error 

matrix. We have again a similar equation as before (no proof this time), i.e.: 

∑ (𝑦𝑖,𝑗 − �̅�)
2

𝑖,𝑗
= 22 ⋅ 𝑟 ⋅ 𝑞𝐴

2 + 22 ⋅ 𝑟 ⋅ 𝑞𝐵
2 + 22 ⋅ 𝑟 ⋅ 𝑞𝐴𝐵

2 +∑ 𝑒𝑖,𝑗
2

𝑖,𝑗

𝑆𝑆𝑇 =     𝑆𝑆𝐴        +     𝑆𝑆𝐵        +     𝑆𝑆𝐴𝐵    + 𝑆𝑆𝐸

 

Where �̅� is the mean response over the whole results matrix. Note that this time each coefficient is 

multiplied by the number of replicas as well. 

 

     observations  errors 

 I A B AB y(1) y(2) y(3) s.m. y y(1)-ym y(2)-ym y(3)-ym 

 1 -1 -1 1 15 18 12 15 0 3 -3 

 1 1 -1 -1 45 48 51 48 -3 0 3 

 1 -1 1 -1 25 28 19 24 1 4 -5 

 1 1 1 1 75 75 81 77 -2 -2 4 

Sum 164 86 38 20         -4 5 -1 

mean 
(qi) 41 21.5 9.5 5         -1 1.25 -0.25 

4*3*qi^2  5547 1083 300       102 

variation  78.9% 15.4% 4.3%       1.5% 

 

This way, we can compute the fraction of variation 𝑓𝑥 =
𝑆𝑆𝑥

𝑆𝑆𝑇
, this time listing the contribution of the 

experimental error explicitly.  

Fraction 
𝑆𝑆𝐸

𝑆𝑆𝑇
 is called unexplained variation, and it should be small. If it is not, then the model may 

not be appropriate. The above example states that factor A accounts fort 78.9% of the variation, etc. 

 

There are a couple of subtleties that we have not addressed so far. The first one is the fact that we 

are using a random sample (of three observations per experiment), hence our effects (i.e., the 𝑞 

coefficients) are themselves random variables. Whenever we have randomness, it is fundamental 

to compute a confidence interval for our measures.  
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In the above example, in fact, if the confidence interval for factor B (the cache) was [-3;15], we 

could not conclude that the effect of the cache is significant. On the other hand, if the CI for the 

effect does not include 0, then we can be sure that the factor is significant.  

The other missing piece is that the above nonlinear regression model works under some assump-

tions, notably that: 

residuals (errors) are IID Normal RVs with a null mean and a constant standard deviation. 

 

and we need to test these hypotheses. More to the point, we can only compute confidence intervals 

given that the above hypotheses hold. 

 

The way to test the Normal hypothesis is to make a QQ plot of the residuals, as usual. In the above 

case we get: 

 

i quantile NormalQ Q 

1 0.041667 -1.73416 -5 

2 0.125 -1.14921 -3 

3 0.208333 -0.81009 -3 

4 0.291667 -0.54654 -2 

5 0.375 -0.3173 -2 

6 0.458333 -0.10416 0 

7 0.541667 0.104165 0 

8 0.625 0.317299 1 

9 0.708333 0.546537 3 

10 0.791667 0.810092 3 

11 0.875 1.149208 4 

12 0.958333 1.734156 4 

 

 

The way to test for constant standard deviation is to plot the residuals vs. the (average) predicted re-

sponse, i.e.: 

y = 2.9843x + 4E-16

R2 = 0.942

-6
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-2 -1.5 -1 -0.5 0 0.5 1 1.5 2



Notes on data analysis (student version) – Giovanni Stea – last saved 30/10/2022 17:48:00 

 

70 

 

 

And the plot shows no trend and a fairly constant standard deviation with the predicted response. 

Note that, in any case, we can ignore trends if the errors are one or more orders of magnitude be-

low the predicted response.   

We should also plot the residuals vs. the experiment number. However, we do not know how the 

sequence of observations has been derived, so this is pointless. We assume that there is no bias.  

Once we have verified all the hypotheses, we can compute confidence intervals for the effects. 

The confidence intervals are computed based on the error variance, which is: 

𝜎𝑒
2 =

𝑆𝑆𝐸

22(𝑟 − 1)
 

Note that the term at the denominator accounts for the fact that the number of degrees of freedom 

for the errors is (𝑟 − 1) per configuration, since all the errors must sum to zero. Hence, you can 

only choose 𝑟 − 1 errors independently, and the last one will be dependent on the others. 

The confidence interval for all the effects is thus: 

𝑞𝑖 ∓ 𝑡𝛼 2⁄ ,(22⋅(𝑟−1))
⋅ √

𝜎𝑒
2

22 ⋅ 𝑟
 

Where 𝑡 is the percentile of the Student’s T distribution.  

Any effect whose CI does not include zero is significant at the specified level of confidence. 

 

Obviously enough, the above theory can be readily extended to an arbitrary number of factors, 

simply by changing few numbers here and there. We will not go through the details, since it is 

straightforward.  
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5 Appendix 

5.1 Useful probability tables 

TABLE 1 - Standard Normal Distribution Function Φ(𝑥) 
 

x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 

.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 

.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 

.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 

.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 

.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 

.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 

.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 

.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 

.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 

3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 

3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997 

3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 
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TABLE 2 - Values of 𝑡𝛼,𝑛 

 

n 𝜶 =0.10 𝜶 =0.05 𝜶 =0.025 𝜶 =0.01 𝜶 =0.005 

1 3.078 6.314 12.706 31.821 63.657 

2 1.886 2.920 4.303 6.965 9.925 

3 1.638 2.353 3.182 4.541 5.841 

4 1.533 2.132 2.776 3.474 4.604 

5 1.476 2.015 2.571 3.365 4.032 

6 1.440 1.943 2.447 3.143 3.707 

7 1.415 1.895 2.365 2.998 3.499 

8 1.397 1.860 2.306 2.896 3.355 

9 1.383 1.833 2.262 2.821 3.250 

10 1.372 1.812 2.228 2.764 3.169 

11 1.363 1.796 2.201 2.718 3.106 

12 1.356 1.782 2.179 2.681 3.055 

13 1.350 1.771 2.160 2.650 3.012 

14 1.345 1.761 2.145 2.624 2.977 

15 1.341 1.753 2.131 2.602 2.947 

16 1.337 1.746 2.120 2.583 2.921 

17 1.333 1.740 2.110 2.567 2.898 

18 1.330 1.734 2.101 2.552 2.878 

19 1.328 1.729 2.093 2.539 2.861 

20 1.325 1.725 2.086 2.528 2.845 

21 1.323 1.721 2.080 2.518 2.831 

22 1.321 1.717 2.074 2.508 2.819 

23 1.319 1.714 2.069 2.500 2.807 

24 1.318 1.711 2.064 2.492 2.797 

25 1.316 1.708 2.060 2.485 2.787 

26 1.315 1.706 2.056 2.479 2.779 

27 1.314 1.703 2.052 2.473 2.771 

28 1.313 1.701 2.048 2.467 2.763 

29 1.311 1.699 2.045 2.462 2.756 

∞ 1.282 1.645 1.960 2.326 2.576 
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TABLE 3 – Chi-square percentiles 

 

 Alpha level 

Degrees of freedom 0.1 0.05 0.02 0.01 0.002 0.001 

1 2.706 3.841 5.412 6.635 9.550 10.828 

2 4.605 5.991 7.824 9.210 12.429 13.816 

3 6.251 7.815 9.837 11.345 14.796 16.267 

4 7.779 9.488 11.668 13.277 16.924 18.467 

5 9.236 11.071 13.388 15.086 18.908 20.516 

6 10.645 12.592 15.033 16.812 20.791 22.458 

7 12.017 14.067 16.622 18.475 22.601 24.323 

8 13.362 15.507 18.168 20.090 24.352 26.125 

9 14.684 16.919 19.679 21.666 26.057 27.878 

10 15.987 18.307 21.161 23.209 27.722 29.589 

20  28.412 31.410 35.020  37.566  43.073  45.316 

 

 

TABLE 4 – Kolmogorov-Smirnov Distributions 

 

 Level of significance 

Sample size n 0.20 0.15 0.10 0.05 0.01 

1 .900 .925 .950 .975 .995 

2 .684 .726 .776 .842 .929 

3 .565 .597 .642 .708 .828 

4 .494 .525 .564 .624 .733 

5 .446 .474 .510 .565 .669 

6 .410 .436 .470 .521 .618 

7 .381 .405 .438 .486 .577 

8 .358 .381 .411 .457 .543 

9 .339 .360 .388 .432 .514 

10 .322 .342 .368 .410 .490 

11 .307 .326 .352 .391 .468 

12 .295 .313 .338 .375 .450 

13 .284 .302 .325 .361 .433 

14 .274 .292 .314 .349 .418 

15 .266 .283 .304 .338 .404 

16 .258 .274 .295 .328 .392 

17 .250 .266 .286 .318 .381 

18 .244 .259 .278 .309 .371 

19 .237 .252 .272 .301 .363 

20 .231 .246 .264 .294 .356 

25 .210 .220 .240 .270 .320 

30 .190 .200 .220 .240 .290 

35 .180 .190 .210 .230 .270 

 OVER 35  1.07/sqrt(n) 1.14/sqrt(n) 1.22/sqrt(n) 1.36/sqrt(n) 1.63/sqrt(n) 
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5.2  Notes on Excel5  

Most of the things that are explained here are good for any version of Excel (you just need to figure 

out where the menus and items are located), and for the Calc Spreadsheet of Open Office (the same 

caveat applies).  

Excel is a spreadsheet, i.e. a means for automating computations. You can write down formulas re-

ferring cells as well as constants, and using functions. Formulas begin with “=”. 

Cell references can be either relative or absolute. Relative references change when you paste the 

formula to another cell. Absolute references do not. 

 

 

In the above example, the formula =D6/12 written in cell C6 includes a relative reference to cell 

D6. This means that, if you copy that formula to  the cell below, it will automatically be updated to 

=D7/12, and so on.  

 

5 Figures are taken from Internet pages. I hope no one takes offense. 



An absolute reference is done by “blocking” 

the column and/or row using the $ symbol. 

This way, the blocked reference will not 

change when you copy/paste the formulas, as 

in the following example. Note that – for the 

first reference – the column is relative and the 

row is absolute, whereas for the second 

reference the column is absolute and the row 

is relative. Both row/col reference can be 

absolute in the same reference. 

 

 

Some formulas in Excel either require matrix-form operands or have a matrix-form result. These 

should be entered as follows 

1) You first select the interval of cells where you want the result to appear 

2) Then you press “=”. Note that you will be entering the formula in the top-left corner of the 

interval of cells that you have selected, but the whole interval stays highlighted 

3) You write down the formula 

4) You press CTRL+SHIFT+ENTER instead of ENTER. 

This way, the formula will be attributed as an atomic unit to all the interval, as in the following ex-

ample. MINVERSE is an Excel function that computes the inverse of a matrix. A2:B3 is the inter-

val where the matrix to be inverted is stored. The formula is written having selected E2:F4 as a tar-

get. 

 

 

Excel can make graphs. Most of the graphs we need to make are scatterplots, which requires the 

user to specify sequences of tuples (x, y1, y2, …. yn), to be used for the plot. The first element will 

be plotted on the x axis, the others will be n curves having abscissa x and ordinates yi.   
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Trendlines (i.e., regression lines) can be added to a scatterplot by right-clicking on the points. 

Trendlines can be formatted so as to display the regression equation as well as the coefficient of 

determination R2. 

 

 

Excel can solve non-linear constrained optimization problems through an add-on component 

called solver. You may have to install it separately through the “option” menu. The latter allows 

you to specify the cell that includes the objective function, the cells including the constraints, and 

the cells that represent the variables (which should be contiguous). You only have to put formulas 

that tie the objective function to the variables (using references) and have the solver do the work. 
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Another Excel add-on is the data analysis package (to be installed the same way as the solver). It 

includes several functions, one of which is called sampling. The latter allows you to subsample a 

sample of data, either periodically or randomly, specifying the number of destination. 

If your spreadsheet does not support subsampling, then a viable alternative is to work as follows: 

- Add an observation id (from 1 to n) in an adjacent column. 

- Generate a string of random numbers, as many as your originale sample, and write them down 

in another adjacent column. Most spreadsheet can generate random numbers. 

- Sort your tuples (id, randi, xi) data according to the second column. This creates a random sort-

ing of your sample. 

- Pick as many consecutive values of your (randomly sorted) sample as you need (e.g., ½, 1/3, 

etc.). By doing so, you are subsampling at random with a probability ½, 1/3, etc. 

- Re-sort your subsample according to the observation id (otherwise you would alter correlation 

yourself by changing the order in which the observations are recorded).  
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6 Labs 

6.1 Lab 1 – computing indexes, fitting probabilities 

Take the Excel file and 

1) Plot the ECDF of the sample 

2) Plot a histogram of the sample, selecting the right bucket width. Try using Excel function 

frequenza or the menu tab analisi dei dati. 

3) Compute the mean, median, mode, quartiles and IQR 

4) Are there outliers beyond the 1.5 IQR limit (both above and below)? 

5) Plot a Lorenz curve of the sample 

6) Compute the sample variance, MAD and Lorenz Curve gap 

7) Fit the sample to a Normal distribution, and estimate the mean and variance of the above 

Normal from the fitting equation 

8) Discuss fitting the sample to a Uniform distribution. Is this a good idea? Why? What is the 

result in any case? 

9) Discuss fitting the sample to an Exponential distribution. Is this a good idea? Why? What is 

the result in any case? 

 

Exercise 2 

Using the Excel functions, compute how good an approximation the following formula is for the 

standard Normal percentiles: 

𝑡𝑖 = 4.91 ⋅ [𝑖
0.14 − (1 − 𝑖)0.14] 

Plot the absolute relative error as a function of the percentile. Where are the highest errors? 

 

Exercise 3 

Use the random (casuale) Excel function to generate n=1000 random numbers taken from U(0,1). 

1) Show that these numbers are uniformly distributed.  

2) Estimate the mean using  

a) the sample mean of the observations 

b) the MLE for the uniform 

3) assume that the population mean is 𝜇 = 0.5. Plot a graph of |𝜇 − �̅�| and |𝜇 − 𝑀𝐿𝐸| against 

the number of observations in the sample, and observe which of the two converges faster. 
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6.2 Lab 2 – independence, model fitting 

Exercise 1 

Consider the sample in the first Excel sheet. 

1) Check whether it is IID or not using lag plots and correlograms 

2) Subsample it until the assumption of IID-ness is consistent with the data 

3) Compute the sample mean and 95% confidence interval 

4) As a counterexample, compute the sample mean and 95% CI assuming that the original 

sample consists of IID RVs. 

 

Exercise 2 

Consider the data in the second Excel sheet 

1. Fit the response times for the two systems using linear models 

2. Test the hypotheses 

3. Check whether there are significant differences between the two systems, using 90% CIs 

4. Make a prediction for the response time with 500 bytes, and associate a confidence interval 

to that prediction. 

 

Exercise 3 

Consider the data in the third Excel sheet 

1. fit them to the most appropriate model 

2. test the hypotheses underlying the model 

3. if the hypotheses are not verified, try a transformation and re-do the fit 

 

6.3 Lab 3 – factorial analysis, testing of RNGs 

Exercise 

Consider the case of two processors A1, A2, tested with two benchmarks (i.e., “standard” sample 

workloads) B1, B2. Each experiment was repeated three times, to account for experimental errors.  

The data (execution times) are as follows: 
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 B1 B2 

A1 85.10, 79.50, 147.90 0.955, 0.933, 1.122 

A2 0.891, 1.047, 1.072 0.0148, 0.0126, 0.0118 

 

1) Compute the contribution of the two factors using a linear response model 

2) Test the hypotheses and discuss the accuracy of the linear response model 

3) Re-do the work with a log transformation 

 

Exercise 2 

1) Write down a C++ program that generates 1000 random numbers in [0,1) using the rand() 

function. As a subordinate, use 1000 generation of the Excel Random() function. 

2) Using all the techniques you can muster, analyze whether the sequence consists of IID 

U(0,1) RVs  

 

 
 
 


